Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Controlled Clinical Trial
. 2011 Feb 24;6(2):e17247.
doi: 10.1371/journal.pone.0017247.

Brown adipose tissue in morbidly obese subjects

Affiliations
Controlled Clinical Trial

Brown adipose tissue in morbidly obese subjects

Guy H E J Vijgen et al. PLoS One. .

Abstract

Background: Cold-stimulated adaptive thermogenesis in brown adipose tissue (BAT) to increase energy expenditure is suggested as a possible therapeutic target for the treatment of obesity. We have recently shown high prevalence of BAT in adult humans, which was inversely related to body mass index (BMI) and body fat percentage (BF%), suggesting that obesity is associated with lower BAT activity. Here, we examined BAT activity in morbidly obese subjects and its role in cold-induced thermogenesis (CIT) after applying a personalized cooling protocol. We hypothesize that morbidly obese subjects show reduced BAT activity upon cold exposure.

Methods and findings: After applying a personalized cooling protocol for maximal non-shivering conditions, BAT activity was determined using positron-emission tomography and computed tomography (PET-CT). Cold-induced BAT activity was detected in three out of 15 morbidly obese subjects. Combined with results from lean to morbidly obese subjects (n = 39) from previous study, the collective data show a highly significant correlation between BAT activity and body composition (P<0.001), respectively explaining 64% and 60% of the variance in BMI (r = 0.8; P<0.001) and BF% (r = 0.75; P<0.001). Obese individuals demonstrate a blunted CIT combined with low BAT activity. Only in BAT-positive subjects (n = 26) mean energy expenditure was increased significantly upon cold exposure (51.5±6.7 J/s versus 44.0±5.1 J/s, P = 0.001), and the increase was significantly higher compared to BAT-negative subjects (+15.5±8.9% versus +3.6±8.9%, P = 0.001), indicating a role for BAT in CIT in humans.

Conclusions: This study shows that in an extremely large range of body compositions, BAT activity is highly correlated with BMI and BF%. BAT-positive subjects showed higher CIT, indicating that BAT is also in humans involved in adaptive thermogenesis. Increasing BAT activity could be a therapeutic target in (morbid) obesity.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. PET-images of fifteen morbidly obese subjects.
Three female subjects showed BAT activity in the supraclavicular area, highlighted by a red rectangle (A). Combined PET- and CT-imaging shows FDG-uptake in supraclavicular adipose tissue (this was the morbidly obese subject that showed the most BAT activity) (B).
Figure 2
Figure 2. Brown adipose tissue activity in relation to body mass index (A) and body fat percentage (B).
The black dots indicate the current study group, the open dots indicate previously performed measurements. Cold-induced thermogenesis (CIT), denoted in percentages, is significantly increased in 26 BAT-positive (BAT+) compared to 13 BAT-negative (BAT-) subjects (C). *: P<0.05.

References

    1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359. - PubMed
    1. Enerback S. Human brown adipose tissue. Cell Metab. 2010;11:248–252. - PubMed
    1. Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112:35–39. - PMC - PubMed
    1. Huttunen P, Hirvonen J, Kinnula V. The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol. 1981;46:339–345. - PubMed
    1. Astrup A, Bulow J, Madsen J, Christensen NJ. Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol. 1985;248:E507–515. - PubMed

Publication types