Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase
- PMID: 21391603
- DOI: 10.1021/ja2006737
Cytotoxic tetramic acid derivative produced by a plant type-III polyketide synthase
Abstract
The tetramic acid (2,4-pyrrolidinedione) scaffold has been recognized as an important structural feature because of its mycotoxic, antibacterial, antiviral, and antioxidant activities. This important class of natural products is reportedly produced by the type-I polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) hybrid megaenzyme systems. In contrast, the benzalacetone synthase (BAS) from Rheum palmatum is a structurally simple, plant-specific type-III PKS that catalyzes the one-step decarboxylative condensation of malonyl-CoA with 4-coumaroyl-CoA. The type-III PKS exhibits unusually broad substrate specificity and notable catalytic versatility. Here we report that R. palmatum BAS efficiently produces a series of unnatural, novel tetramic acid derivatives by the condensation of malonyl-CoA with aminoacyl-CoA thioesters chemically synthesized from L- and D-amino acids. Remarkably, the novel tetramic acid dimer D-5 formed from D-phenylalanoyl-CoA showed moderate antiproliferative activity against murine leukemia P388 cells.
© 2011 American Chemical Society
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
