Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;13(6):1395-411.
doi: 10.1111/j.1462-2920.2011.02440.x. Epub 2011 Mar 9.

Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency

Affiliations

Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency

J-P Bellenger et al. Environ Microbiol. 2011 Jun.

Abstract

Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N₂ fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources