Vanadate-catalyzed, conformationally specific photocleavage of the Ca2(+)-ATPase of sarcoplasmic reticulum
- PMID: 2139345
- DOI: 10.1016/0005-2736(90)90411-g
Vanadate-catalyzed, conformationally specific photocleavage of the Ca2(+)-ATPase of sarcoplasmic reticulum
Abstract
Vanadate-sensitized photocleavage of the Ca2(+)-ATPase of rabbit sarcoplasmic reticulum was observed upon illumination of sarcoplasmic reticulum vesicles or the purified Ca2(+)-ATPase by ultraviolet light in the presence of 1 mM monovanadate or decavanadate. The site of the photocleavage is influenced by the Ca2+ concentration of the medium. When the [Ca2+] is maintained below 10 nM by EGTA, the vanadate-catalyzed photocleavage yields fragments of approximately equal to 87 and approximately equal to 22 kDa, while in the presence of 2-20 mM Ca, polypeptides of 71 and 38 kDa are obtained as the principal cleavage products. These observations indicate that the site of the vanadate-catalyzed photocleavage is altered by changes in the conformation of Ca2(+)-ATPase. Selective tryptic proteolysis, at Arg-505-Ala-506, combined with covalent labeling of Lys-515 by fluorescein 5'-isothiocyanate and with the use of anti-ATPase antibodies of defined specificity, permitted the tentative allocation of the sites of photocleavage to the A fragment near the T2 cleavage site in the absence of Ca2+, and to the B fragment between Lys-515 and Asp-659 in the presence of 2-20 mM Ca2+. The loss of ATPase activity during illumination is accelerated by calcium in the presence of vanadate. The vanadate-catalyzed photocleavage in the presence of Ca2+ is consistent with the existence of an ATPase-Ca2(+)-vanadate complex (Markus et al. (1989) Biochemistry 28, 793-799).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous