Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;20(4):295-311.
doi: 10.1615/critreveukargeneexpr.v20.i4.20.

FGF signaling in craniofacial biological control and pathological craniofacial development

Affiliations
Review

FGF signaling in craniofacial biological control and pathological craniofacial development

Nan E Hatch. Crit Rev Eukaryot Gene Expr. 2010.

Abstract

Fibroblast growth factor receptors comprise a family of four evolutionarily conserved transmembrane proteins (FGFR1, FGFR2, FGFR3 and FGFR4) known to be critical for the normal development of multiple organ systems. In this review we will primarily focus upon the role of FGF/FGFR signaling as it influences the development of the craniofacial skeleton. Signaling by FGF receptors is regulated by the tissue-specific expression of FGFR isoforms, receptor subtype specific fibroblast growth factors and heparin sulfate proteoglycans. Signaling can also be limited by the expression of endogenous inhibitors. Gain-of-function mutations in FGFRs are associated with a series of congenital abnormality syndromes referred to as the craniosynostosis syndromes. Craniosynostosis is the clinical condition of premature cranial bone fusion and patients who carry craniosynostosis syndrome-associated mutations in FGFRs commonly have abnormalities of the skull vault in the form of craniosynostosis. Patients may also have abnormalities in the facial skeleton, vertebrae and digits. In this review we will discuss recent in vitro and in vivo studies investigating biologic mechanisms by which signaling through FGFRs influences skeletal development and can lead to craniosynostosis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources