Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 11;12(1):29.
doi: 10.1186/1465-9921-12-29.

Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD

Affiliations

Comprehensive characterisation of pulmonary and serum surfactant protein D in COPD

Carla Winkler et al. Respir Res. .

Abstract

Background: Pulmonary surfactant protein D (SP-D) is considered as a candidate biomarker for the functional integrity of the lung and for disease progression, which can be detected in serum. The origin of SP-D in serum and how serum concentrations are related to pulmonary concentrations under inflammatory conditions is still unclear.

Methods: In a cross-sectional study comprising non-smokers (n=10), young--(n=10), elderly smokers (n=20), and smokers with COPD (n=20) we simultaneously analysed pulmonary and serum SP-D levels with regard to pulmonary function, exercise, repeatability and its quaternary structure by native gel electrophoresis. Statistical comparisons were conducted by ANOVA and post-hoc testing for multiple comparisons; repeatability was assessed by Bland-Altman analysis.

Results: In COPD, median (IQR) pulmonary SP-D levels were lower (129(68) ng/ml) compared to smokers (young: 299(190), elderly: 296(158) ng/ml; p<0.01) and non-smokers (967(708) ng/ml; p<0.001). The opposite was observed in serum, with higher concentrations in COPD (140(89) ng/ml) as compared to non-smokers (76(47) ng/ml; p<0.01). SP-D levels were reproducible and correlated with the degree of airway obstruction in all smokers. In addition, smoking lead to disruption of the quaternary structure.

Conclusions: Pulmonary and serum SP-D levels are stable markers influenced by smoking and related to airflow obstruction and disease state. Smaller subunits of pulmonary SP-D and the rapid increase of serum SP-D levels in COPD due to exercise support the translocation hypothesis and its use as a COPD biomarker.

Trial registration: no interventional trial.

PubMed Disclaimer

Figures

Figure 1
Figure 1
SP-D levels in BAL and Serum. SP-D levels in BAL (A) serum (B) and the ratio of BAL/serum SP-D levels (C) of healthy, non-smoking subjects (H, open squares n = 10), young smokers (S1, black squares, n = 10), elderly smokers (S2, open triangles, n = 20) and smokers with COPD (C, black triangles n = 20). Log-transformed individual data points are provided together with the respective mean of the log transformed data. Values are displayed on a logarithmic scale. *p < 0.05, **p < 0.01, ***p < 0.001 compared to H, #p < 0.05, ##p < 0.01 compared to C.
Figure 2
Figure 2
Repeatability of SP-D measurements. Bland-Altman plot to assess the repeatability of SP-D levels in BAL (A) and serum (B) of elderly smokers (S2) and smokers with COPD between two samplings with a time delay of about 34 ± 10 days. The coefficient of reliability (derived from one-way ANOVA as the ratio of variance among subjects to total variance) is given as intraclass correlation coefficient (ICC).
Figure 3
Figure 3
Correlation of lung function measurements and SP-D levels. Correlation of SP-D levels in BAL (A), serum (B) or the ratio of SP-D in BAL and serum (C) with FEV1/FVC in smokers (n = 50, young and elderly smokers and smokers with COPD). FEV1: forced expiratory volume in 1 s, FVC: forced vital capacity. Correlations were significant with p < 0.001, r = 0.62 (A); p = 0.013, r = 0.-0.35 (B) and p < 0.001, r = 0.60 (C).
Figure 4
Figure 4
Kinetics of SP-D levels in serum during constant load exercise. Kinetics of SP-D levels in serum during constant load exercise taken at 4 different time points: at rest (rest), after 5 min of steady state exercise (5 min), at the end of loaded exercise (end), and 20 min after exercise (recovery). Change in SP-D serum concentrations over time in elderly smokers (S2, open triangles, dashed line, n = 15) and smokers with COPD (C, black triangles, n = 15) are shown. Data are given on the vertical axis on a logarithmic scale as mean ± SEM, * p < 0.05 compared to time point "rest".
Figure 5
Figure 5
Quaternary structure of pulmonary SP-D. The quaternary structure of SP-D in BAL: A) equal amounts of SP-D were loaded as indicated by equal band intensities of the SP-D monomer (43 kDa) in SDS page under reduced conditions and immunoblotting (upper panel A and B). The quaternary structure of SP-D in bronchoalveolar lavage from 4 healthy subjects (H) and smokers (S1) is demonstrated by blue native electrophoresis and immunoblotting (lower panel A) as well as for 3 smokers with COPD (C) (lower panel B). Due to very low SP-D levels in BAL of COPD subjects the displayed intensity of SP-D bands is not comparable between A and B.
Figure 6
Figure 6
Oxidative induced disruption of the quaternary structure of pulmonary SP-D. Blue native electrophoresis of surfactant protein-D after incubation with an oxygen radical donor (+). Disruption of the multimeric structure (*) can be chemically induced by exposing rr-SP-D or BAL from healthy subjects to 74 mM of the oxidizing agent 2,2-Azo-bis-(2-amidinopropane)-dihydrochloride (+).

References

    1. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med. 2009;360:2445–2454. doi: 10.1056/NEJMra0804752. - DOI - PubMed
    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176:532–555. doi: 10.1164/rccm.200703-456SO. - DOI - PubMed
    1. Wright JR. Immunoregulatory functions of surfactant proteins. Nat Rev Immunol. 2005;5:58–68. doi: 10.1038/nri1528. - DOI - PubMed
    1. Fisher JH, Sheftelyevich V, Ho YS, Fligiel S, McCormack FX, Korfhagen TR, Whitsett JA, Ikegami M. Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol. 2000;278:L365–L373. - PubMed
    1. Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T. Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol. 2006;43:1293–1315. doi: 10.1016/j.molimm.2005.08.004. - DOI - PubMed

MeSH terms

Substances