Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun 30;177(1):30-5.
doi: 10.1016/j.resp.2011.03.005. Epub 2011 Mar 17.

Detection of disturbances in pulmonary gas exchanges during exercise from arterialized earlobe PO2

Affiliations

Detection of disturbances in pulmonary gas exchanges during exercise from arterialized earlobe PO2

Bernard Aguilaniu et al. Respir Physiol Neurobiol. .

Abstract

Blood sampling from the arterialized earlobe is widely used in clinical exercise testing but Fajac et al. (1998) (Eur. Respir. J. 11, 712-715) have shown that arterialized P(O2) Pc(CO2) is not a valid surrogate for Pa(O2). In the present study, in order to detect disturbances in pulmonary gas exchanges during clinical exercise testing from the alveolar-arterial gradient of P(O2) (P[Ai-a](O2)), a correction factor for Pc(O2) was validated from data on a large cohort (107 patients at one or two levels of exercise: 172 pairs of samples). Pulmonary gas exchanges and pH, P(O2), P(CO2), PA(iO2) and P(Ai-a)(O2) from arterial and arterialized blood were measured or computed. Arterial and arterialized pH and P(CO2) (and thus PA(iO2)) were similar but P(CO2) was lower than arterial P(O2) (Pa(O2)). However, when corrected for the systematic bias between Pa(O2) and Pc(O2), which increased with Pc(O2), Pc(O2) adequately detected disturbances in pulmonary gas exchanges with a very high sensibility and specificity (predictive values of a negative or positive test ∼95%).

PubMed Disclaimer

Publication types