Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2011 Jul;115(1):65-74.
doi: 10.1097/ALN.0b013e318214b9de.

Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients

Affiliations
Randomized Controlled Trial

Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients

Thomas Schilling et al. Anesthesiology. 2011 Jul.

Abstract

Background: One-lung ventilation (OLV) results in alveolar proinflammatory effects, whereas their extent may depend on administration of anesthetic drugs. The current study evaluates the effects of different volatile anesthetics compared with an intravenous anesthetic and the relationship between pulmonary and systemic inflammation in patients undergoing open thoracic surgery.

Methods: Sixty-three patients scheduled for elective open thoracic surgery were randomized to receive anesthesia with 4 mg · kg⁻¹ · h⁻¹ propofol (n = 21), 1 minimum alveolar concentration desflurane (n = 21), or 1 minimum alveolar concentration sevoflurane (n = 21). Analgesia was provided by remifentanil (0.25 μg · kg⁻¹ · min⁻¹). After intubation, all patients received pressure-controlled mechanical ventilation with a tidal volume of approximately 7 ml · kg ideal body weight, a peak airway pressure lower than 30 cm H₂O, a respiratory rate adjusted to a Paco2 of 40 mmHg, and a fraction of inspired oxygen lower than 0.8 during OLV. Fiberoptic bronchoalveolar lavage of the ventilated lung was performed immediately after intubation and after surgery. The expression of inflammatory cytokines was determined in the lavage fluids and serum samples by multiplexed bead-based immunoassays.

Results: Proinflammatory cytokines increased in the ventilated lung after OLV. Mediator release was more enhanced during propofol anesthesia compared with desflurane or sevoflurane administration. For tumor necrosis factor-α, the values were as follows: propofol, 5.7 (8.6); desflurane, 1.6 (0.6); and sevoflurane, 1.6 (0.7). For interleukin-8, the values were as follows: propofol, 924 (1680); desflurane, 390 (813); and sevoflurane, 412 (410). (Values are given as median [interquartile range] pg · ml⁻¹). Interleukin-1β was similarly reduced during volatile anesthesia. The postoperative serum interleukin-6 concentration was increased in all patients, whereas the systemic proinflammatory response was negligible.

Conclusions: OLV increases the alveolar concentrations of proinflammatory mediators in the ventilated lung. Both desflurane and sevoflurane suppress the local alveolar, but not the systemic, inflammatory responses to OLV and thoracic surgery.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources