Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Mar 27;29(12):3091-101.
doi: 10.1021/bi00464a028.

Mechanism of inhibition of the (Ca2(+)-Mg2+)-ATPase by nonylphenol

Affiliations

Mechanism of inhibition of the (Ca2(+)-Mg2+)-ATPase by nonylphenol

F Michelangeli et al. Biochemistry. .

Abstract

The effects of nonylphenol and 3,5-dibutyl-4-hydroxytoluene (BHT) on the activity of the (Ca2(+)-Mg2+)-ATPase of skeletal muscle sarcoplasmic reticulum have been studied. At high concentrations, both inhibit the ATPase activity of the ATPase either in native lipid or in bilayers of dioleoylphosphatidylcholine but, at low concentrations, an increase in ATPase activity is observed, particularly for the ATPase reconstituted into dimyristoleoylphosphatidylcholine. Neither nonylphenol nor BHT binds at the lipid-protein interface of the ATPase. Nonylphenol decreases the effective equilibrium constant for phosphorylation of the ATPase by Pi probably through an increase in the effective rate of dephosphorylation of the phosphorylated ATPase. It also decreases the effective rate of the E2-Ca2E1 transition and increases the effective equilibrium constant E2/E1 for the ATPase. Inhibition of ATPase activity follows from the slowing of the E2-E1 transition despite increases in effective rates for dephosphorylation and for the transport step, Ca2E1P-E2P. Since nonylphenol has been shown to affect equilibrium constants for various steps in the reaction pathway of the ATPase, inhibition of activity of the ATPase cannot follow from effects on the fluidity (viscosity) of the membrane, since fluidity alone cannot affect equilibrium properties of the system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources