The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality
- PMID: 21404076
- DOI: 10.1007/s00285-011-0417-5
The model of Kermack and McKendrick for the plague epidemic in Bombay and the type reproduction number with seasonality
Abstract
The figure showing how the model of Kermack and McKendrick fits the data from the 1906 plague epidemic in Bombay is the most reproduced figure in books discussing mathematical epidemiology. In this paper we show that the assumption of constant parameters in the model leads to quite unrealistic numerical values for these parameters. Moreover the reports published at the time show that plague epidemics in Bombay occurred in fact with a remarkable seasonal pattern every year since 1897 and at least until 1911. So the 1906 epidemic is clearly not a good example of epidemic stopping because the number of susceptible humans has decreased under a threshold, as suggested by Kermack and McKendrick, but an example of epidemic driven by seasonality. We present a seasonal model for the plague in Bombay and compute the type reproduction numbers associated with rats and fleas, thereby extending to periodic models the notion introduced by Roberts and Heesterbeek.
Similar articles
-
Simple multi-scale modeling of the transmission dynamics of the 1905 plague epidemic in Bombay.Math Biosci. 2018 Jul;301:83-92. doi: 10.1016/j.mbs.2018.04.003. Epub 2018 Apr 16. Math Biosci. 2018. PMID: 29673967
-
The 2017 plague outbreak in Madagascar: Data descriptions and epidemic modelling.Epidemics. 2018 Dec;25:20-25. doi: 10.1016/j.epidem.2018.05.001. Epub 2018 Jun 2. Epidemics. 2018. PMID: 29866421
-
The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.J Math Biol. 2017 Dec;75(6-7):1563-1590. doi: 10.1007/s00285-017-1123-8. Epub 2017 Apr 13. J Math Biol. 2017. PMID: 28409223 Free PMC article.
-
Plague disease model with weather seasonality.Math Biosci. 2018 Aug;302:80-99. doi: 10.1016/j.mbs.2018.05.013. Epub 2018 May 23. Math Biosci. 2018. PMID: 29800562 Review.
-
Discussion: the Kermack-McKendrick epidemic threshold theorem.Bull Math Biol. 1991;53(1-2):3-32. doi: 10.1016/s0092-8240(05)80039-4. Bull Math Biol. 1991. PMID: 2059740 Review.
Cited by
-
On the definition and the computation of the type-reproduction number T for structured populations in heterogeneous environments.J Math Biol. 2013 Mar;66(4-5):1065-97. doi: 10.1007/s00285-012-0522-0. Epub 2012 Mar 14. J Math Biol. 2013. PMID: 22415249
-
Mathematical models to characterize early epidemic growth: A review.Phys Life Rev. 2016 Sep;18:66-97. doi: 10.1016/j.plrev.2016.07.005. Epub 2016 Jul 11. Phys Life Rev. 2016. PMID: 27451336 Free PMC article. Review.
-
Acceleration of plague outbreaks in the second pandemic.Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27703-27711. doi: 10.1073/pnas.2004904117. Epub 2020 Oct 19. Proc Natl Acad Sci U S A. 2020. PMID: 33077604 Free PMC article.
-
Human behavior and disease dynamics.Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2317211120. doi: 10.1073/pnas.2317211120. Epub 2023 Dec 27. Proc Natl Acad Sci U S A. 2024. PMID: 38150502 Free PMC article. No abstract available.
-
A revisit to the past plague epidemic (India) versus the present COVID-19 pandemic: fractional-order chaotic models and fuzzy logic control.Eur Phys J Spec Top. 2022;231(5):905-919. doi: 10.1140/epjs/s11734-021-00335-2. Epub 2021 Dec 12. Eur Phys J Spec Top. 2022. PMID: 34925704 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Medical