Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr;285(4):341-54.
doi: 10.1007/s00438-011-0611-6. Epub 2011 Mar 16.

Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms

Affiliations

Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms

Carlos Romá-Mateo et al. Mol Genet Genomics. 2011 Apr.

Abstract

Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including parasite organisms responsible for infectious human diseases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Genetics. 2004 Feb;166(2):707-19 - PubMed
    1. Proc Natl Acad Sci U S A. 2005 May 17;102(20):7215-20 - PubMed
    1. Plant Cell. 2009 Sep;21(9):2884-97 - PubMed
    1. Mol Microbiol. 2006 Sep;61(5):1147-66 - PubMed
    1. BMC Genomics. 2007 Nov 26;8:434 - PubMed

Publication types

Substances