Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun;110(6):1485-94.
doi: 10.1111/j.1365-2672.2011.05004.x. Epub 2011 Mar 30.

Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation

Affiliations

Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation

R Moeller et al. J Appl Microbiol. 2011 Jun.

Abstract

Aims: To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H(2)O(2)), wet heat, and germicidal 254 nm and simulated environmental UV radiation.

Methods and results: Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280-400 and 320-400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H(2)O(2) but not to wet heat or 254-nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated.

Conclusions: Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth's surface and to H(2)O(2). These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents.

Significance and impact of the study: This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H(2)O(2). This knowledge provides further insight into factors influencing spore resistance and inactivation.

PubMed Disclaimer

Publication types

MeSH terms