Variants of GCKR affect both β-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2
- PMID: 21411509
- PMCID: PMC3114499
- DOI: 10.2337/dc10-2218
Variants of GCKR affect both β-cell and kidney function in patients with newly diagnosed type 2 diabetes: the Verona newly diagnosed type 2 diabetes study 2
Abstract
Objective: In genome-wide association studies, performed mostly in nondiabetic individuals, genetic variability of glucokinase regulatory protein (GCKR) affects type 2 diabetes-related phenotypes, kidney function, and risk of chronic kidney disease (CKD). We tested whether GCKR variability affects type 2 diabetes or kidney-related phenotypes in newly diagnosed type 2 diabetes.
Research design and methods: In 509 GAD-negative patients with newly diagnosed type 2 diabetes, we 1) genotyped six single nucleotide polymorphisms in GCKR genomic region: rs6717980, rs1049817, rs6547626, rs780094, rs2384628, and rs8731; 2) assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp, and β-cell function by state-of-the-art modeling of glucose/C-peptide curves during an oral glucose tolerance test; and 3) estimated glomerular filtration rate (eGFR) by the Modification of Diet in Renal Disease formula.
Results: The major alleles of rs6717980 and rs2384628 were associated with reduced β-cell function (P < 0.05), with mutual additive effects of each variant (P < 0.01). The minor alleles of rs1049817 and rs6547626 and the major allele of rs780094 were associated with reduced eGFR according to a recessive model (P < 0.03), but with no mutual additive effects of the variants. Additional associations were found between rs780094 and 2-h plasma glucose (P < 0.05) and rs8731 and insulin sensitivity (P < 0.05) and triglycerides (P < 0.05).
Conclusions: Our findings are compatible with the idea that GCKR variability may play a pathogenetic role in both type 2 diabetes and CKD. Genotyping GCKR in patients with newly diagnosed type 2 diabetes might help in identifying patients at high risk for metabolic derangements or CKD.
Figures


References
-
- de la Iglesia N, Mukhtar M, Seoane J, Guinovart JJ, Agius L. The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem 2000;275:10597–10603 - PubMed
-
- Saxena R, Voight BF, Lyssenko V, et al. ; Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007;316:1331–1336 - PubMed
-
- Sparsø T, Andersen G, Nielsen T, et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia 2008;51:70–75 - PubMed
-
- Onuma H, Tabara Y, Kawamoto R, et al. The GCKR rs780094 polymorphism is associated with susceptibility of type 2 diabetes, reduced fasting plasma glucose levels, increased triglycerides levels and lower HOMA-IR in Japanese population. J Hum Genet 2010;55:600–604 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources