Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 11;6(3):e17748.
doi: 10.1371/journal.pone.0017748.

A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine

Affiliations

A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine

William P Halford et al. PLoS One. .

Abstract

Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0⁻ virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0⁻ virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: William Halford is a co-author on United States Patent Appication Publication US2010/0226940 A1, which describes the uses of herpes simplex virus mutant ICP0 in the design of a live-attenuated HSV-2 vaccine strain. This does not alter the authors' adherence to all PLoS ONE policies on sharing data and materials.

Figures

Figure 1
Figure 1. HSV-2 0ΔNLS is avirulent and immunogenic in female ICR mice.
Duration of survival following inoculation of naïve mice with culture medium containing 25,000 pfu per µl of (A) HSV-2 MS or (B) HSV-2 0ΔNLS following placement of 4 µl on left and right scarified eyes; 5 µl in left and right nostrils; 50 µl in left and right, rear footpads; or 20 µl instilled into the vaginal vault (n = 10 mice per group). A single asterisk (*) denotes a probability, p, <0.05 and a double asterisk (**) denotes p<0.001 that matched pairs of mice inoculated with (A) HSV-2 MS or (B) HSV-2 0ΔNLS survived at equivalent frequencies, as calculated by Fisher's Exact Test. (C) Mean ± sem abundance of gD-2 specific IgG antibody in mouse serum on Day 50 p.i., as determined by ELISA on 1∶100 dilutions of mouse serum (n = 10 per 0ΔNLS-immunization group; n = 5 MS-immunized mice). The y-axis represents relative units of IgG abundance expressed as “fold-increase above background,” as determined relative to a 0.33-log dilution series of high titer anti-HSV-2 antiserum that provided the standard curve that defined the quantitative relationship between anti-gD-2 IgG antibody abundance and the colorimetric development in each well of the ELISA plate (i.e., the standard curve had a goodness-of-fit of r2 = 0.99). A double asterisk (**) denotes a probability, p, <0.001 that gD-2-antibody levels were equivalent to naïve mice, as determined by one-way ANOVA and Tukey's post hoc t-test.
Figure 2
Figure 2. Mice immunized with HSV-2 0ΔNLS are resistant to HSV-2 vaginal challenge.
Mice were treated with 2 mg medoxyprogesterone 7 and 3 days prior to vaginal HSV-2 challenge . On Day 56 p.i., HSV-2 0ΔNLS- and MS-immunized mice were challenged with 500,000 pfu per vagina of HSV-2 MS. (A) HSV-2 shedding from the vagina between Days 2 and 6 post-challenge in naïve mice (n = 10) versus mice inoculated in the rear footpads with HSV-2 MS (n = 5) or HSV-2 0ΔNLS (n = 5). (B) HSV-2 shedding from the vagina of naïve mice versus mice inoculated in the eyes, nose, or vagina with HSV-2 0ΔNLS (n = 5 per group). In panels A and B, a single asterisk (*) denotes a probability, p, <0.05 and a double asterisk (**) denotes p<0.001 that HSV-2 shedding was equivalent to naïve controls on that day, as determined by one-way ANOVA and Tukey's post hoc t-test. (C) Survival frequency of naïve mice (n = 10) versus immunized mice (n = 5 per group) after HSV-2 challenge of the vagina. A double asterisk (**) denotes p<0.001 that survival frequency was equivalent to naïve mice.
Figure 3
Figure 3. Immunization with HSV-2 0ΔNLS, gD-2, or control immunogens.
(A) Design of vaccine-challenge experiments. Protein-immunized mice were injected in their right, rear footpads on Day 0 with 10 µg monophosphoryl lipid A, 2.5 µg gD-2 or GFP, and alum (n = 40 per group). On Day 30, mice received an equivalent immunization in their left, rear footpads. Virus-immunized mice received injections on Days 0 and 30 of culture medium (mock), 1×106 pfu of HSV-2 0ΔNLS, or 1×106 pfu of HSV-2 MS (n = 40 per group). Mice immunized with HSV-2 MS received 1 mg/ml acyclovir in drinking water from Days −1 to +20 p.i. On Day 60, blood was harvested from all mice, and on Days 80, 90, or 100, mice were challenged with wild-type HSV-2 MS. (B) HSV-2 replication in mouse footpads. In a parallel experiment, mice were footpad-injected with 1×106 pfu of HSV-2 MS in the presence or absence of oral acyclovir (ACV) or 1×106 pfu of HSV-2 0ΔNLS. On Days 1, 2, and 3 p.i., footpad titers of infectious HSV-2 were determined in n = 8 mice per group; on days 5 and 7 p.i., footpad titers were determined in n = 4 mice per group. All datum points represent mean ± sem pfu per footpad. A double asterisk (**) denotes p<0.001 that viral titers per footpad were the same as HSV-2 MS-inoculated mice not treated with acyclovir. (C) Mean ± sem relative abundance of gD-2 specific IgG antibody in mouse serum on Day 60 p.i., as determined by ELISA on 1∶100 dilutions of mouse serum (n = 30 per group). Relative units of IgG abundance are expressed as “fold-increase above background,” as determined relative to a 0.33-log dilution series of high titer anti-HSV-2 antiserum that provided the standard curve that defined the quantitative relationship between anti-gD-2 IgG antibody abundance and colorimetric development. A double asterisk (**) denotes p<0.001 that gD-2-antibody levels were equivalent to naïve (medium-treated) mice, as determined by one-way ANOVA and Tukey's post hoc t-test.
Figure 4
Figure 4. Resistance of naïve versus immunized mice to vaginal HSV-2 infection.
Mice were treated with 2 mg medoxyprogesterone 7 and 3 days prior to vaginal HSV-2 challenge . On Days 80, 90, or 100 p.i., mice were challenged with 500,000 pfu per vagina of HSV-2 MS (n = 5 per group). The summated results from all three experiments are presented in each panel (∑n = 15 per group). (A) Vaginal HSV-2 shedding between Days 1 and 7 post-challenge in mice that were naïve or immunized with gD-21-306t versus HSV-2 0ΔNLS. (B) Vaginal HSV-2 shedding in mice that were naïve or immunized with GFP versus HSV-2 MS. In panels A and B, a single asterisk (*) denotes p<0.05 and a double asterisk (**) denotes p<0.001 that HSV-2 shedding was equivalent to naïve mice on that day, as determined by one-way ANOVA and Tukey's post hoc t-test. (C) Mean ± sem reduction in HSV-2 shedding on Days 1–7 post-challenge relative to the average titer of HSV-2 shed by naïve mice on that day (n = 75 per group). In panel C, a single asterisk (*) denotes p<0.05 and a double asterisk (**) denotes p<0.001 that reductions in vaginal shedding of HSV-2 MS were significantly greater than a value of 1, as determined by one-way ANOVA and Tukey's post hoc t-test. The difference in reductions in HSV-2 MS vaginal shedding between 0ΔNLS- and gD-2-immunized mice was significant (p<10−23; two-sided, paired t-test). (D) Survival frequency over time following HSV-2 MS challenge of the vagina. A double asterisk (**) denotes p<0.001 that survival frequency was equivalent to naïve mice, as determined by Fisher's Exact Test. The survival rate of gD-2 immunized mice was not significantly different than naïve mice (p = 0.22, Fisher's Exact Test).
Figure 5
Figure 5. Polyclonal HSV-2 IgG antibody response elicited by HSV-2 0ΔNLS, gD-2, or control immunogens.
(A) Mean ± sem neutralizing antibody titer of Day 60 serum samples (n = 20 per group). The titer of each serum sample was considered to be the reciprocal of the largest serum dilution that reduced HSV-2's cytopathic effect in Vero cell monolayers by at least 50%. (B) Representative immunofluorescent labeling of fixed HSV-2 plaques with a 1∶5,000 dilution of Day 60 serum from each immunization group. (C) Flow cytometric measurement of pan-HSV-2-specific IgG levels in Day 60 sera, as determined by IgG binding to fixed HSV-2-infected cells versus uninfected Vero cells (n = 8 per group). In panels A and C, a double asterisk (**) denotes p<0.001 that neutralizing antibody titers or pan-HSV-2 IgG levels were equivalent to naïve mice, as determined by one-way ANOVA and Tukey's post hoc t-test. The difference in pan HSV-2 IgG levels between 0ΔNLS- and gD-2-immunized mice was significant (p<0.0001; two-sided, paired t-test). (D) Regression analysis of the logarithm of pan-HSV-2 IgG levels (x-variable, as measured on Day 60) in n = 25 mice versus the logarithmic reduction in vaginal HSV-2 MS shedding (y-variable, as measured on Day 81) observed in the same n = 25 mice at 24 hours post-vaginal challenge. The x-variable data is based on a subset of the data summarized in Figure 5C, and likewise the y-variable data is based on a subset of the data summarized in Figure 4C. The individual datum points are derived from n = 5 mice per group that were immunized with medium (naïve), GFP, gD-2, HSV-2 0ΔNLS, or HSV-2 MS (ACV-restrained infection), as indicated in the legend in Panel D. The quantity on the y-axis, Δlog (pfu/vagina), represents the logarithmic decrease of HSV-2 MS shed from an individual mouse vagina at 24 hours post-challenge relative to 5.20 logs, which was the average titer of HSV-2 MS shed by naïve mice at 24 hours post-challenge. The goodness-of-fit of the correlation between log (pan-HSV-2 IgG) and Δlog (pfu/vagina) was r2 = 0.83 and the slope of the correlation was 1.38±0.13 (p<10−9).
Figure 6
Figure 6. Vaccine-induced protection against HSV-2 MS-luciferase infection.
(A and C) Mice were treated with 2 mg medoxyprogesterone 7 and 3 days prior to vaginal HSV-2 challenge . On Day 130 p.i., mice were challenged with (A) 500,000 pfu per vagina or (C) 100,000 pfu per eye of HSV-2 MS-luciferase, and were anaesthetized and injected with 3 mg D-luciferin substrate at times post-challenge for imaging in a bioluminescent imager. Not shown in panels A or C are the age- and sex-matched, uninfected control mice included in these analyses that were anaesthetized and injected with 3 mg D-luciferin substrate at the same time, and which served as a background control to define the background level of light emission recorded from each mouse by the bioluminescent imager. (B and D) Mean ± sem of luciferase activity in mice challenged in the (B) vagina or (D) eyes with HSV-2 MS-luciferase, as measured by the fold-increase in light emission from each mouse relative to an uninfected background control mouse injected with 3 mg D-luciferin substrate. In the vaginally challenged group, each datum point represents the mean ± sem of luciferase activity based on ∑n = 5 per group (n = 3 challenged on Day 50 p.i. and n = 2 challenged on Day 130 p.i.). In the ocularly challenged group, each datum point represents the mean ± sem of luciferase activity based on ∑n = 4 per group (n = 2 challenged on Day 50 p.i. and n = 2 challenged on Day 130 p.i.). A single asterisk (*) denotes p<0.05 and a double asterisk (**) denotes p<0.001 that luciferase activity in HSV-2 MS-luciferase-challenged mice was significantly different from uninfected control mice injected with 3 mg D-luciferin, as determined by one-way ANOVA and Tukey's post hoc t-test. In both vaginal and ocular challenge tests, luciferase activity was significantly different between gD-2- and 0ΔNLS-immunized mice (p<0.0001; two-sided, paired t-test).
Figure 7
Figure 7. HSV-2 MS-GFP infection is established in the eyes of HSV-2 0ΔNLS-immunized mice, but is rapidly restricted.
A naïve and HSV-2 0ΔNLS-immunized mouse, as observed 24 hours after challenge with 100,000 pfu per eye of HSV-2 MS-GFP. Experiments were performed on n = 3 mice per group and a representative animal is shown. The complete progression of HSV-2 MS-GFP infection in this naïve mouse versus immunized mouse is shown in Figure S6.
Figure 8
Figure 8. HSV-2 0ΔNLS-induced protective immunity does not decline between Days 30 and 190 post-immunization.
The mean ± sem frequency of survival following HSV-2 MS challenge was compared over time in mice immunized with HSV-2 0ΔNLS or gD-2. The gD-2 plot is based on survival frequencies observed in challenge experiments performed between Days 30–60 (n = 1), 70–80 (n = 3), and 90–100 (n = 4) post-immunization. The 0ΔNLS plot is based on survival frequencies observed in challenge experiments performed between Days 30–60 (n = 5), 70–80 (n = 4), 90–100 (n = 4), and 140–190 (n = 2) post-immunization. Specific outcomes of the n = 15 challenge experiments are summarized in Table S1. The double asterisk (**) denotes that differences in percent survival of 0ΔNLS-versus gD-2-immunized mice following HSV-2 MS challenge were significant (p<10−15; two-sided Student's t-test).

Similar articles

Cited by

References

    1. CDC. Seroprevalence of herpes simplex virus type 2 among persons aged 14–49 years–United States, 2005–2008. MMWR Morb Mortal Wkly Rep. 2010;59:456–459. - PubMed
    1. Gottlieb SL, Douglas JM, Jr, Foster M, Schmid DS, Newman DR, et al. Incidence of herpes simplex virus type 2 infection in 5 sexually transmitted disease (STD) clinics and the effect of HIV/STD risk-reduction counseling. J Infect Dis. 2004;190:1059–1067. - PubMed
    1. Jonsson MK, Wahren B. Sexually transmitted herpes simplex viruses. Scand J Infect Dis. 2004;36:93–101. - PubMed
    1. Solomon L, Cannon MJ, Reyes M, Graber JM, Wetherall NT, et al. Epidemiology of recurrent genital herpes simplex virus types 1 and 2. Sex Transm Infect. 2003;79:456–459. - PMC - PubMed
    1. Bernstein DI. Potential for immunotherapy in the treatment of herpesvirus infections. Herpes. 2001;8:8–11. - PubMed

Publication types

MeSH terms