Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 27;59(8):3851-6.
doi: 10.1021/jf200251k. Epub 2011 Apr 4.

Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus

Affiliations

Coexpression of the superoxide dismutase and the catalase provides remarkable oxidative stress resistance in Lactobacillus rhamnosus

Haoran An et al. J Agric Food Chem. .

Abstract

Lactic acid bacteria (LAB) are generally sensitive to oxidative stress caused by reactive oxygen species (ROS). Antioxidant enzymes, especially superoxide dismutase (SOD) and catalase (CAT), can protect against ROS by eliminating superoxide and H(2)O(2), respectively. Lactobacillus rhamnosus is a valuable probiotic starter culture but is deficient in both SOD and CAT, and is thus likely to suffer from oxidative stress in industrial fermentation. To confer high level of oxidative resistance on L. rhamnosus , the SOD gene sodA from Streptococcus thermophilus and CAT gene katA from L. sakei were coexpressed in L. rhamnosus AS 1.2466. The enzyme activities of SOD and CAT were 147.80 ± 1.08 U/mg protein and 2.53 μmol of H(2)O(2) /min/10(8) cfu, respectively, in the recombinant L. rhamnosus CS. After incubation with 10 mM H(2)O(2), the survival ratio of L. rhamnosus CS was 400-fold higher than that of L. rhamnosus CAT. In long-term aerated conditions, viable cells of L. rhamnosus CS remained ∼10(6) cfu/mL after incubation for 7 days, while no living cells of the control were detected. These results showed that the cooperation between SOD and CAT could significantly enhance oxidative resistance in L. rhamnosus . To our best knowledge, this is the first report of two synergistic antioxidant genes being coexpressed in the same Lactobacilli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources