Evolution of gene regulatory networks controlling body plan development
- PMID: 21414487
- PMCID: PMC3076009
- DOI: 10.1016/j.cell.2011.02.017
Evolution of gene regulatory networks controlling body plan development
Abstract
Evolutionary change in animal morphology results from alteration of the functional organization of the gene regulatory networks (GRNs) that control development of the body plan. A major mechanism of evolutionary change in GRN structure is alteration of cis-regulatory modules that determine regulatory gene expression. Here we consider the causes and consequences of GRN evolution. Although some GRN subcircuits are of great antiquity, other aspects are highly flexible and thus in any given genome more recent. This mosaic view of the evolution of GRN structure explains major aspects of evolutionary process, such as hierarchical phylogeny and discontinuities of paleontological change.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures



Similar articles
-
The evolution of hierarchical gene regulatory networks.Nat Rev Genet. 2009 Feb;10(2):141-8. doi: 10.1038/nrg2499. Epub 2009 Jan 13. Nat Rev Genet. 2009. PMID: 19139764 Review.
-
Gene regulatory networks and the evolution of animal body plans.Science. 2006 Feb 10;311(5762):796-800. doi: 10.1126/science.1113832. Science. 2006. PMID: 16469913 Review.
-
The evolution of gene regulatory networks controlling Arabidopsis thaliana L. trichome development.BMC Plant Biol. 2019 Feb 15;19(Suppl 1):53. doi: 10.1186/s12870-019-1640-2. BMC Plant Biol. 2019. PMID: 30813891 Free PMC article.
-
Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.Biochim Biophys Acta. 2009 Apr;1789(4):326-32. doi: 10.1016/j.bbagrm.2009.01.004. Epub 2009 Jan 22. Biochim Biophys Acta. 2009. PMID: 19284985 Review.
-
Developmental gene regulatory network evolution: insights from comparative studies in echinoderms.Genesis. 2014 Mar;52(3):193-207. doi: 10.1002/dvg.22757. Epub 2014 Mar 6. Genesis. 2014. PMID: 24549884 Review.
Cited by
-
An excess of gene expression divergence on the X chromosome in Drosophila embryos: implications for the faster-X hypothesis.PLoS Genet. 2012;8(12):e1003200. doi: 10.1371/journal.pgen.1003200. Epub 2012 Dec 27. PLoS Genet. 2012. PMID: 23300473 Free PMC article.
-
Integrative cross-species analysis of GABAergic neuron cell types and their functions in Alzheimer's disease.Sci Rep. 2022 Nov 11;12(1):19358. doi: 10.1038/s41598-022-21496-7. Sci Rep. 2022. PMID: 36369318 Free PMC article.
-
Homologous gene regulatory networks control development of apical organs and brains in Bilateria.Sci Adv. 2022 Nov 4;8(44):eabo2416. doi: 10.1126/sciadv.abo2416. Epub 2022 Nov 2. Sci Adv. 2022. PMID: 36322649 Free PMC article.
-
Functionalization of a protosynaptic gene expression network.Proc Natl Acad Sci U S A. 2012 Jun 26;109 Suppl 1(Suppl 1):10612-8. doi: 10.1073/pnas.1201890109. Epub 2012 Jun 20. Proc Natl Acad Sci U S A. 2012. PMID: 22723359 Free PMC article.
-
Plasticity-led evolution as an intrinsic property of developmental gene regulatory networks.Sci Rep. 2023 Nov 14;13(1):19830. doi: 10.1038/s41598-023-47165-x. Sci Rep. 2023. PMID: 37963964 Free PMC article.
References
-
- Aboobaker A, Blaxter M. The nematode story: Hox gene loss and rapid evolution. Adv Exp Med Biol. 2010;689:101–110. - PubMed
-
- Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature. 2006;442:563–567. - PubMed
-
- Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and morphological variation of beaks in Darwin's finches. Science. 2004;305:1462–1465. - PubMed
-
- Averof M, Patel NH. Crustacean appendage evolution associated with changes in Hox gene expression. Nature. 1997;388:682–686. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous