Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:27:95-114.
doi: 10.1080/02648725.2010.10648146.

Co-immobilized coupled enzyme systems in biotechnology

Affiliations
Review

Co-immobilized coupled enzyme systems in biotechnology

Lorena Betancor et al. Biotechnol Genet Eng Rev. 2010.

Abstract

The development of coimmobilized multi-enzymatic systems is increasingly driven by economic and environmental constraints that provide an impetus to develop alternatives to conventional multistep synthetic methods. As in nature, enzyme-based systems work cooperatively to direct the formation of desired products within the defined compartmentalization of a cell. In an attempt to mimic biology, coimmobilization is intended to immobilize a number of sequential or cooperating biocatalysts on the same support to impart stability and enhance reaction kinetics by optimizing catalytic turnover. There are three primary reasons for the utilization of coimmobilized enzymes: to enhance the efficiency of one of the enzymes by the in-situ generation of its substrate, to simplify a process that is conventionally carried out in several steps and/or to eliminate undesired by-products of an enzymatic reaction. As such, coimmobilization provides benefits that span numerous biotechnological applications, from biosensing of molecules to cofactor recycling and to combination of multiple biocatalysts for the synthesis of valuable products.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources