Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 May-Jun;3(3):323-34.
doi: 10.1002/wsbm.147. Epub 2011 Feb 16.

Drug repurposing and adverse event prediction using high-throughput literature analysis

Affiliations
Review

Drug repurposing and adverse event prediction using high-throughput literature analysis

Spyros N Deftereos et al. Wiley Interdiscip Rev Syst Biol Med. 2011 May-Jun.

Abstract

Drug repurposing is the process of using existing drugs in indications other than the ones they were originally designed for. It is an area of significant recent activity due to the mounting costs of traditional drug development and scarcity of new chemical entities brought to the market by bio-pharmaceutical companies. By selecting drugs that already satisfy basic toxicity, ADME and related criteria, drug repurposing promises to deliver significant value at reduced cost and in dramatically shorter time frames than is normally the case for the drug development process. The same process that results in drug repurposing can also be used for the prediction of adverse events of known or novel drugs. The analytics method is based on the description of the mechanism of action of a drug, which is then compared to the molecular mechanisms underlying all known adverse events. This review will focus on those approaches to drug repurposing and adverse event prediction that are based on the biomedical literature. Such approaches typically begin with an analysis of the literature and aim to reveal indirect relationships among seemingly unconnected biomedical entities such as genes, signaling pathways, physiological processes, and diseases. Networks of associations of these entities allow the uncovering of the molecular mechanisms underlying a disease, better understanding of the biological effects of a drug and the evaluation of its benefit/risk profile. In silico results can be tested in relevant cellular and animal models and, eventually, in clinical trials.

PubMed Disclaimer

Substances

LinkOut - more resources