Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jun 22;36(3):211-5.
doi: 10.1016/0022-4731(90)90007-f.

Metabolism of toremifene in the rat

Affiliations

Metabolism of toremifene in the rat

H Sipilä et al. J Steroid Biochem. .

Abstract

Toremifene was labelled to a specific activity of about 20 microCi/mmol with tritium at positions 3 and 5 in the para-substituted phenyl ring. At these positions tritium is not eliminated within the metabolic pathways. A mixture of unlabelled and labelled toremifene (5 or 10 mg/kg, 5 microCi/mg) was given i.v. or p.o. to Sprague-Dawley rats. The elimination of radioactivity was followed up by collecting urine and feces daily for 13 days. The elimination of toremifene which was similar after p.o. and i.v. administration took place mainly in the feces. About 70% of the total radioactivity was eliminated within 13 days, of this amount more than 90% in the feces. All applied radioactivity could be detected in three separate fractions according to the oxidative state of the side chain when counted by Berthold TLC Linear Analyzer. Each fraction was further separated into single metabolites by TLC or HPLC. Altogether 9 metabolites were identified and almost all methanol-extractable components were identified. The main metabolic pathways in the rat were 4-hydroxylation and N-demethylation. The side chain was further oxidized to alcohols and carboxylic acids. Small amounts of unchanged toremifene were found in the feces both after p.o. and i.v. administration indicating biliary secretion.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources