Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011;30(2):183-92.
doi: 10.4012/dmj.2010-107. Epub 2011 Mar 12.

Sandblasted-acid-etched titanium surface influences in vitro the biological behavior of SaOS-2 human osteoblast-like cells

Affiliations
Free article
Comparative Study

Sandblasted-acid-etched titanium surface influences in vitro the biological behavior of SaOS-2 human osteoblast-like cells

Luca Ramaglia et al. Dent Mater J. 2011.
Free article

Abstract

Osseointegrated dental implants have been successfully used over the past several years, allowing functional replacement of missing teeth. Surface properties of titanium dental implants influence bone cell response. Implant topography appears to modulate cell growth and differentiation of osteoblasts thus affecting the bone healing process. Optimal roughness and superficial morphology are still controversial and need to be clearly defined. In the present study we evaluated in vitro the biological behavior of SaOS-2 cells, a human osteoblast-like cell line, cultured on two different titanium surfaces, smooth and sandblasted-acid-etched, by investigating cell morphology, adhesion, proliferation, expression of some bone differentiation markers and extracellular matrix components. Results showed that the surface topography may influence in vitro the phenotypical expression of human osteoblast-like cells. In particular the tested sandblasted-acid-etched titanium surface induced a significantly increased Co I deposition and α2-β1 receptor expression as compared to the relatively smooth surface, promoting a probable tendency of SaOS-2 cells to shift toward a mature osteoblastic phenotype. It is therefore likely that specific surface properties of sandblasted-acid-etched titanium implants may modulate the biological behavior of osteoblasts during bone tissue healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms