Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 17:2:18.
doi: 10.3389/fnsyn.2010.00018. eCollection 2010.

Presynaptic NMDA Receptors and Spike Timing-Dependent Depression at Cortical Synapses

Affiliations

Presynaptic NMDA Receptors and Spike Timing-Dependent Depression at Cortical Synapses

Antonio Rodríguez-Moreno et al. Front Synaptic Neurosci. .

Abstract

It has recently been discovered that some forms of timing-dependent long-term depression (t-LTD) require presynaptic N-methyl-d-aspartate (NMDA) receptors. In this review, we discuss the evidence for the presence of presynaptic NMDA receptors at cortical synapses and their possible role in the induction of t-LTD. Two basic models emerge for the induction of t-LTD at cortical synapses. In one model, coincident activation of presynaptic NMDA receptors and CB1 receptors mediates t-LTD. In a second model, CB1 receptors are not necessary, and the activation of presynaptic NMDA receptors alone appears to be sufficient for the induction of t-LTD.

Keywords: NMDA; STDP; plasticity; presynaptic mechanisms; t-LTD.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Two models of presynaptic NMDA receptor-dependent t-LTD. Model 1: Presynaptic NMDA receptors and CB1 receptors drive t-LTD. In this model, during post-before-pre pairing, presynaptically released glutamate activates mGluRs and postsynaptic action potentials enhance Ca2+ influx. This would lead to endocannabinoid (eCB) synthesis. eCB diffuses retrogradely and binds to presynaptic CB1 receptors. Co-activation of presynaptic CB1 receptors and presynaptic NMDA receptors causes synaptic depression. In this model, presynaptic NMDA receptors are activated by glutamate release from the presynaptic terminal. Astrocytic release of gliotransmitters (glutamate as agonist and/or D-serine or glycine as co-agonist) may contribute to activating neuronal NMDA receptors. Model 2: In a second model, eCB-dependent retrograde signaling is not necessary for induction of t-LTD (dashed crosses), and activation of presynaptic NMDA receptors alone appears to be sufficient to drive presynaptic t-LTD. The source of transmitter activating presynaptic NMDA receptors is unknown.

Similar articles

Cited by

References

    1. Aoki C., Venkatesam C., Go C. G., Mong J. A., Dawson T. M. (1994). Cellular and subcellular localization of NMDA-R1subunit immunorreactivity in the visual cortex of adult and neonatal rats. J. Neurosci. 14, 5202–5222 - PMC - PubMed
    1. Banerjee A., Meredith R. M., Rodríguez-Moreno A., Mierau S. B., Auberson Y. P., Paulsen O. (2009). Double dissociation of spike timing-dependent potentiation and depression by subunit-preferring NMDA receptor antagonists in mouse barrel cortex. Cereb. Cortex 19, 2959–296910.1093/cercor/bhp067 - DOI - PMC - PubMed
    1. Bardoni R., Torsney C., Tong C.-T., Prandini M., MacDermott A. B. (2004). Presynaptic NMDA receptors modulate glutamate release from primary sensory neurons in rat spinal cord dorsal horn. J. Neurosci. 24, 2774–278110.1523/JNEUROSCI.4637-03.2004 - DOI - PMC - PubMed
    1. Bender V. A., Bender K. J., Brasier D. J., Feldman D. E. (2006). Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J. Neurosci. 16, 4166–417710.1523/JNEUROSCI.0176-06.2006 - DOI - PMC - PubMed
    1. Berretta N., Jones R. S. (1996). Tonic facilitation of glutamate release by presynaptic N-methyl-D-aspartate autoreceptors in the entorhinal cortex. Neuroscience 75, 339–34410.1016/0306-4522(96)00301-6 - DOI - PubMed

LinkOut - more resources