Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 10;6(3):e17476.
doi: 10.1371/journal.pone.0017476.

Functional structure of biological communities predicts ecosystem multifunctionality

Affiliations

Functional structure of biological communities predicts ecosystem multifunctionality

David Mouillot et al. PLoS One. .

Abstract

The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Geometrical presentation of functional diversity indices.
For simplicity, only two traits are considered to define a two-dimensional functional space. For the 6 panels, a local community of 10 species (dark disks) is considered among a regional pool of 25 species (grey crosses). Species are plotted in this space according to their respective trait values while the circle areas are proportional to their abundances. Functional diversity of a community is thus the distribution of species and of their abundances in this functional space. Functional richness is the functional space occupied by the community, functional evenness is the regularity in the distribution of species abundances in the functional space and functional divergence quantifies how species abundances diverge from the centre of the functional space. For each component of functional diversity, two contrasting communities are represented, the right column showing an increase of the index value. More details on indices can be found in Text S1.
Figure 2
Figure 2. Relationships between community structure and ecosystem multifunctionality.
(A) Multifunctionality performance of each community in the functional trait space (first and third axes of the PCoA – PCoA 1 and PCoA 3 respectively). (A) Multifunctionality performance against functional divergence (FDiv). Circle sizes are proportional to performance of communities. See Table 1 for associated statistics.
Figure 3
Figure 3. Two species communities represented in functional space with contrasting multifunctionality levels.
Two 8-species communities of our experiment with the highest multifunctionality level (a) and the lowest (b). Positions of species are presented in the functional space (first and third PCoA axes). The black triangle labeled “Agg” represents the biomass-weighted mean trait values (aggregated trait) along the two PCoA axes while the lines represent the functional volume occupied by each community. The sizes of grey circles are proportional to species relative abundances. Full species names and trait values can be found in Table S1.
Figure 4
Figure 4. Results of the structural equation model (SEM) linking the multifunctionality of ecosystems to biodiversity indices.
(S: species richness, E: evenness in species abundances, PC1 PC2 and PC3: aggregated mean trait values along three PCoA axes, FRic: functional richness, FEve: functional evenness, FDiv: functional divergence.) Numbers next to unidirectional arrows are standardized slopes and those next to bidirectional arrows are correlations. Only significant effects or correlations are shown (* p<0.1, ** p<0.05, *** p<0.01). For detailed statistics and for each process, see Text S2.

References

    1. Chapin FS, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, et al. Biotic control over the functioning of ecosystems. Science. 1997;277:500–504.
    1. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs. 2005;75:3–35.
    1. Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, et al. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature. 2000;408:79–82. - PubMed
    1. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, et al. Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science. 2001;294:804–808. - PubMed
    1. Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature. 2006;443:989–992. - PubMed

Publication types