Nanogold-based sensing of environmental toxins: excitement and challenges
- PMID: 21424976
- DOI: 10.1080/10590501.2011.551315
Nanogold-based sensing of environmental toxins: excitement and challenges
Abstract
There have been tremendous advances in the past ten years on the development of various nanomaterials-based sensors for detection of environmental toxins. Nanogold is of special interest because of its unique shape- and size-dependent optical properties, hyper-quenching ability, super surface-enhanced Raman and dynamic light scattering, and surface-modifiability by small organic molecules and biomolecules. These unique optical properties of nanogold have been explored for ultra-sensitive detection, while its surface-modifiability has been explored for selectivity. In general, the nanogold-based sensors are highly selective and sensitive along with simple sample preparation and sensor design. In this review article, we intend to capture some of the recent advances in nanogold-based sensor development and mechanistic studies, especially for bacteria, heavy metals, and nitroaromatic compounds. Undoubtedly, these developments will generate a lot of excitement for environmental scientists and toxicologists as well as the general public.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous