Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;29(1):52-89.
doi: 10.1080/10590501.2011.551315.

Nanogold-based sensing of environmental toxins: excitement and challenges

Affiliations
Review

Nanogold-based sensing of environmental toxins: excitement and challenges

Paresh Chandra Ray et al. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2011.

Abstract

There have been tremendous advances in the past ten years on the development of various nanomaterials-based sensors for detection of environmental toxins. Nanogold is of special interest because of its unique shape- and size-dependent optical properties, hyper-quenching ability, super surface-enhanced Raman and dynamic light scattering, and surface-modifiability by small organic molecules and biomolecules. These unique optical properties of nanogold have been explored for ultra-sensitive detection, while its surface-modifiability has been explored for selectivity. In general, the nanogold-based sensors are highly selective and sensitive along with simple sample preparation and sensor design. In this review article, we intend to capture some of the recent advances in nanogold-based sensor development and mechanistic studies, especially for bacteria, heavy metals, and nitroaromatic compounds. Undoubtedly, these developments will generate a lot of excitement for environmental scientists and toxicologists as well as the general public.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources