Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Mar;10(1):89-103.
doi: 10.1142/S0219635211002634.

The aqueous layers within the myelin sheath modulate the membrane properties of simulated hereditary demyelinating neuropathies

Affiliations
Review

The aqueous layers within the myelin sheath modulate the membrane properties of simulated hereditary demyelinating neuropathies

D I Stephanova et al. J Integr Neurosci. 2011 Mar.

Abstract

To expand our studies on the mechanisms underlying the clinical decline of the nerve excitability properties in patients with hereditary demyelinating neuropathies, the contribution of myelin sheath aqueous layers on multiple membrane properties of simulated fiber demyelinations is investigated. Three progressively greater degrees of internodal systematic demyelinations (two mild and one severe termed as ISD1, ISD2 and ISD3, respectively) without/with aqueous layers are simulated using our previous multi-layered model of human motor nerve fiber. The calculated multiple membrane excitability properties are as follows: potentials (intracellular action, electrotonic), strength-duration time constants, rheobasic currents and recovery cycles. They reflect the propagating, accommodative and adaptive processes in the fibers. The results show that all membrane properties, except for the strength-duration time constants and refractoriness, worsen when the myelin lamellae and their corresponding aqueous layers are uniformly reduced along the fiber length. The effect of the aqueous layers is significantly higher on the accommodative and adaptive processes than on the propagating processes in the fibers. Our multi-layered model better approximated some of the functional deficits documented for axons of patients with Charcot-Marie-Tooth disease type 1A. The study provides new and important information on the mechanisms underlying the pathophysiology of hereditary demyelinating neuropathies.

PubMed Disclaimer