Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 14;115(14):4168-76.
doi: 10.1021/jp111216g. Epub 2011 Mar 22.

Molecular mechanism of the affinity interactions between protein A and human immunoglobulin G1 revealed by molecular simulations

Affiliations

Molecular mechanism of the affinity interactions between protein A and human immunoglobulin G1 revealed by molecular simulations

Bo Huang et al. J Phys Chem B. .

Abstract

Protein A (SpA) affinity chromatography has been widely used for the purification of immunoglobulin G (IgG). However, the molecular mechanism of the affinity between IgG and SpA remains unclear. In this work, molecular dynamics simulations and molecular mechanics-Poisson-Boltzmann surface area analysis were performed to investigate the molecular mechanism of the affinity interactions. It is found that hydrophobic interaction contributes more than 80% to the binding free energy, while electrostatic interaction plays a minor role (<20%). Through free energy decomposition and pair interaction analysis, the hot spots of the SpA-hIgG1 complex are identified. For hIgG1, the hot spots include the residues of I253, H310, Q311, D315, K317, E430, and N434. For SpA, residues F132, Y133, H137, E143, R146, and K154 contribute significantly. Furthermore, helix I of SpA binds Fc through hydrophobic interaction, while helix II mainly provides electrostatic interaction that determines the binding selectivity to different Igs. Finally, the binding motif of SpA is constructed, which would help design novel high-affinity ligands of IgG.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources