A nanomechanical interface to rapid single-molecule interactions
- PMID: 21427718
- DOI: 10.1038/ncomms1246
A nanomechanical interface to rapid single-molecule interactions
Abstract
Single-molecule techniques provide opportunities for molecularly precise imaging, manipulation, assembly and biophysical studies. Owing to the kinetics of bond rupture processes, rapid single-molecule measurements can reveal novel bond rupture mechanisms, probe single-molecule events with short lifetimes and enhance the interaction forces supplied by single molecules. Rapid measurements will also increase throughput necessary for technological use of single-molecule techniques. Here we report a nanomechanical sensor that allows single-molecule force spectroscopy on the previously unexplored microsecond timescale. We probed bond lifetimes around 5 μs and observed significant enhancements in molecular interaction forces. Our loading-rate-dependent measurements provide experimental evidence for an additional energy barrier in the biotin-streptavidin complex. We also demonstrate quantitative mapping of rapid single-molecule interactions with high spatial resolution. This nanomechanical interface may allow studies of molecular processes with short lifetimes and development of novel biological imaging, single-molecule manipulation and assembly technologies.
Similar articles
-
Direct force measurements of the streptavidin-biotin interaction.Biomol Eng. 1999 Dec 31;16(1-4):45-55. doi: 10.1016/s1050-3862(99)00035-2. Biomol Eng. 1999. PMID: 10796984
-
Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.Int J Mol Sci. 2010 May 13;11(5):2134-51. doi: 10.3390/ijms11052134. Int J Mol Sci. 2010. PMID: 20559507 Free PMC article.
-
Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy.Biochemistry. 2000 Aug 22;39(33):10219-23. doi: 10.1021/bi992715o. Biochemistry. 2000. PMID: 10956011
-
Essentials of biorecognition: the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction.Immunol Lett. 2006 Feb 28;103(1):27-32. doi: 10.1016/j.imlet.2005.10.022. Epub 2005 Nov 21. Immunol Lett. 2006. PMID: 16325268 Review.
-
Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment.Curr Opin Chem Biol. 2011 Oct;15(5):710-8. doi: 10.1016/j.cbpa.2011.07.020. Epub 2011 Aug 19. Curr Opin Chem Biol. 2011. PMID: 21862386 Review.
Cited by
-
Simulating the Self-Assembly and Hysteresis Loops of Ferromagnetic Nanoparticles with Sticking of Ligands.Nanomaterials (Basel). 2021 Oct 27;11(11):2870. doi: 10.3390/nano11112870. Nanomaterials (Basel). 2021. PMID: 34835635 Free PMC article.
-
Electrically Controllable Single-Point Covalent Functionalization of Spin-Cast Carbon-Nanotube Field-Effect Transistor Arrays.ACS Nano. 2018 Oct 23;12(10):9922-9930. doi: 10.1021/acsnano.8b03073. Epub 2018 Oct 3. ACS Nano. 2018. PMID: 30260623 Free PMC article.
-
Towards 4-dimensional atomic force spectroscopy using the spectral inversion method.Beilstein J Nanotechnol. 2013;4:87-93. doi: 10.3762/bjnano.4.10. Epub 2013 Feb 7. Beilstein J Nanotechnol. 2013. PMID: 23503061 Free PMC article.
-
High-resolution nanomechanical analysis of suspended electrospun silk fibers with the torsional harmonic atomic force microscope.Beilstein J Nanotechnol. 2013 Apr 5;4:243-8. doi: 10.3762/bjnano.4.25. Print 2013. Beilstein J Nanotechnol. 2013. PMID: 23616944 Free PMC article.
-
Optimization of phase contrast in bimodal amplitude modulation AFM.Beilstein J Nanotechnol. 2015 Apr 28;6:1072-81. doi: 10.3762/bjnano.6.108. eCollection 2015. Beilstein J Nanotechnol. 2015. PMID: 26114079 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources