Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May;138(9):1663-74.
doi: 10.1242/dev.060897. Epub 2011 Mar 23.

Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish

Affiliations

Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish

Juan Manuel González-Rosa et al. Development. 2011 May.

Abstract

The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than its damage. Here, we characterize the cellular response and regenerative capacity of the zebrafish heart after cryoinjury, an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). Localized damage was induced in 25% of the ventricle by cryocauterization (CC). During the first 24 hours post-injury, CC leads to cardiomyocyte death within the injured area and the near coronary vasculature. Cell death is followed by a rapid proliferative response in endocardium, epicardium and myocardium. During the first 3 weeks post-injury cell debris was cleared and the injured area replaced by a massive scar. The fibrotic tissue was subsequently degraded and replaced by cardiac tissue. Although animals survived CC, their hearts showed nonhomogeneous ventricular contraction and had a thickened ventricular wall, suggesting that regeneration is associated with processes resembling mammalian ventricular remodeling after acute MI. Our results provide the first evidence that, like mammalian hearts, teleost hearts undergo massive fibrosis after cardiac damage. Unlike mammals, however, the fish heart can progressively eliminate the scar and regenerate the lost myocardium, indicating that scar formation is compatible with myocardial regeneration and the existence of endogenous mechanisms of scar regression. This finding suggests that CC-induced damage in zebrafish could provide a valuable model for the study of the mechanisms of scar removal post-MI.

PubMed Disclaimer

Publication types

MeSH terms

Substances