Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 24;471(7339):461-6.
doi: 10.1038/nature09957.

Catalytic Z-selective olefin cross-metathesis for natural product synthesis

Affiliations

Catalytic Z-selective olefin cross-metathesis for natural product synthesis

Simon J Meek et al. Nature. .

Abstract

Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.

PubMed Disclaimer

Figures

Figure 1
Figure 1. A catalytic cross-metathesis (CM) reaction involves two different types of alkenes and can afford as many as six products; the challenge is to design an efficient process that favors formation of the cross products
Particularly difficult is the development of a process that affords the higher energy Z alkene predominantly. To accomplish a Z-selective CM, a variety of catalysts was considered, such as stereogenic-at-Mo complexes (1–2) or other previously reported Mo- and Ru-based complexes (3–5). The structural flexibility of the stereogenic-at-metal complexes 1–2 can give rise to exceptional reactivity and free rotation around the Mo–O bond of these alkylidenes might serve as the basis for development of highly Z-selective olefin metathesis reactions of terminal olefins. The sphere represents an appropriate size imido substituent.
Figure 2
Figure 2. Z-selective cross-metathesis (CM) reactions of enol ethers with terminal alkenes and application to stereoselective synthesis of C18 (plasm)-16:0 (PC)
Various Z enol ethers are synthesized with 1.2–5.0 mol % of Mo complex 1a and typically require 2.0 (in the case of p-methoxyphenylvinyl ether) or 10.0 (with butylvinyl ether) equivalents of the terminal enol ether; excess butyl vinyl ether (6) is easily removed in vacuo. The desired Z-olefins are obtained in 51–77% yield and in 94% to >98% Z selectivity. Application to synthesis of C18 (plasm)-16:0 (PC) demonstrates utility of the Z-selective Mo-catalyzed CM, which is used in conjunction with a site- and enantioselective Cu-catalyzed dihydroboration of the terminal alkyne in 14 (see the Supplementary Information for details). *The reactions were performed under N2 atm; catalysts we prepared and used in situ.Conversions and Z selectivities determined by analysis of 400 MHz 1H NMR spectra of unpurified mixtures; yields of isolated products (±5%). Conversion and Z:E ratios measured by analysis of 400 MHz 1H NMR spectra of unpurified mixtures; the variance of values are estimated to be <±2%. § Performed with 2.5 mol % 1a and 10 equiv 6 (see the Supplementary Information for experimental details). † Performed with 1.2 mol % 1a and 2.0 equiv 9 (see the Supplementary Information for experimental details). ‡ Performed with 5.0 mol % 1a and 10 (10b) or 2.0 equiv 9 (10d) (see the Supplementary Information for experimental details). **Conditions for synthesis of 16: (a) 1. 2.5 mol % 1a, C6H6, 22 °C, 2.0 h, decalin, 1.0 torr. 2. 5.0 equiv (n-Bu)4NF, thf, 22 °C, 2 h. (b) 2.5 mol % 15, 2.5 mol % CuCl, 20 mol % NaOt-Bu, 2.1 equiv bis(pinacolato)diboron, 3.0 equiv MeOH, thf, 0 °C, 24 h; 30% H2O2, NaOH in aqueous thf, 1.0 h.
Figure 3
Figure 3. Z-selective cross-metathesis (CM) reactions of allylic amides with terminal alkenes and application to stereoselective synthesis of KRN7000
A range of Z-1,2-Disubstituted alllylic amides can be synthesized; in most cases use of reduced pressure leads to substantially improved yield and stereoselectivity. Application to the stereoselective synthesis of KRN7000, involving catalytic diastereoselective dihydroxylation of the Z alkene obtained by Mo-catalyzed CM, leads to an expeditious route for preparation of this biologically significant natural product (see the Supplementary Information for details). *The reactions were performed under N2 atm with 3.0 mol % 2, 3.0 equiv of the non-N-containing alkenes (19b-c) or 5.0 mol % 2 and 10.0 equivalents of cross partner, 7.0 torr, 5.0 hours, 22 °C; catalysts were prepared and used in situ. Conversions and Z selectivities determined by analysis of 400 MHz 1H NMR spectra of unpurified mixtures; yields of isolated products after purification (±5%). Conversion and Z:E ratios measured by analysis of 400 MHz 1H NMR spectra of unpurified mixtures; the variance of values are estimated to be <±2%. § Reduced pressure was not used; reaction performed at 50 °C for 12 h (see the Supplementary Information for experimental details). † Reaction time was one hour (see the Supplementary Information for experimental details). **Conditions for synthesis of 24: (a) 8.0 mol % 2 (in situ-generated), C6H6, 22 °C, 5.0 h, 1.0 torr. (b) 5 mol % OsO4, 2.5 equiv N-Me-morpholine oxide, CH2Cl2, 0 °C, 24 h. (c) 10% trifluoroacetic acid, CH2Cl2, 22 °C, 30 min. (d) 1.2 equiv 23, Et3N, thf, 50 °C, 12 h.

Comment in

References

    1. Negishi E-i, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Recent advances in efficient and selective synthesis of di-, tri, and tetrasubstituted alkenes via Pd-catalyzed alkenylation–carbonyl olefination strategy. Acc Chem Res. 2008;41:1474–1485. - PubMed
    1. Chatterjee AK. In: Handbook of Metathesis. Grubbs RH, editor. Vol. 1. Wiley–VCH; Weinheim, Germany: 2003. pp. 246–295.
    1. Crowe WE, Goldberg DR. Acrylonitrile cross-metathesis: Coaxing olefin metathesis reactivity from a reluctant substrate. J Am Chem Soc. 1995;117:5162–5163.
    1. Hansen EC, Lee D. Efficient and Z-selective cross-metathesis of conjugated enynes. Org Lett. 2004;6:2035–2038. - PubMed
    1. Malcolmson SJ, Meek SJ, Sattely ES, Schrock RR, Hoveyda AH. Highly efficient molybdenum-based catalysts for alkene metathesis. Nature. 2008;456:933–937. - PMC - PubMed

Publication types

MeSH terms