The effect of epigallocatechin gallate on intestinal motility in mice
- PMID: 21432088
- PMCID: PMC2723319
- DOI: 10.1007/BF02897926
The effect of epigallocatechin gallate on intestinal motility in mice
Abstract
Objectives: The epigallocatechin-3-gallate (EGCg) that is present in human diet originates mainly from tea leaves. Catechins have a number of possible application as medicines, however, there is no consistent evidence showing their influence on the gastrointestinal tract. Thus, the aim of the present study was to investigate the effect of EGCg on the motility of the murine isolated intestine.
Methods: Segments of jejunum submerged in Krebs buffer were exposed to EGCg and the response was recorded under isometric conditions.
Results: EGCg induced a dose-dependent inhibition of spontaneous activity in the jejunum. EGCg induced a decrease in the amplitude and frequency of jejunal contractions. moreover, the rythmicity of spontaneous, activity was altered in the presence of EGCg. A significant effect of EGCg was observed in the presence of 10(-4) M. The effect of EGCg was in part inhibited by pretreatment with methylene blue (guanylate cyclase inhibitor), while tetrodotoxin, (sodium channel blocker), L-nitro arginine methyl ester (nitric oxide synthase inhibitor), and N-ethylmaleimide (adenylate cyclase inhibitor) showed no effect.
Conclusions: The results of the present study suggest that EGCg inhibits the motility of the jejunum by direct action on smooth muscle cells where a guanylate cyclase-dependent mechanism may be partly involved.
Keywords: epigallocatechin; intestine; motility; mouse.
Similar articles
-
(-)-epigallocatechin gallate inhibits the pacemaker activity of interstitial cells of cajal of mouse small intestine.Korean J Physiol Pharmacol. 2008 Jun;12(3):111-5. doi: 10.4196/kjpp.2008.12.3.111. Epub 2008 Jun 30. Korean J Physiol Pharmacol. 2008. PMID: 20157403 Free PMC article.
-
Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway.Eur J Pharmacol. 2009 Apr 17;608(1-3):48-53. doi: 10.1016/j.ejphar.2009.02.034. Epub 2009 Feb 26. Eur J Pharmacol. 2009. PMID: 19249297
-
A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation.J Biol Chem. 2004 Feb 13;279(7):6190-5. doi: 10.1074/jbc.M309114200. Epub 2003 Nov 24. J Biol Chem. 2004. PMID: 14645258
-
The role of nitric oxide and L-type calcium channel blocker in the contractility of rabbit ileum in vitro.J Physiol Biochem. 2012 Dec;68(4):521-8. doi: 10.1007/s13105-012-0167-x. Epub 2012 Apr 14. J Physiol Biochem. 2012. PMID: 22528554
-
HPLC analysis of naturally occurring methylated catechins, 3' '- and 4' '-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages.J Agric Food Chem. 2005 Sep 7;53(18):7035-42. doi: 10.1021/jf0507442. J Agric Food Chem. 2005. PMID: 16131108
Cited by
-
(-)-epigallocatechin gallate inhibits the pacemaker activity of interstitial cells of cajal of mouse small intestine.Korean J Physiol Pharmacol. 2008 Jun;12(3):111-5. doi: 10.4196/kjpp.2008.12.3.111. Epub 2008 Jun 30. Korean J Physiol Pharmacol. 2008. PMID: 20157403 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1080/10715760000301151', 'is_inner': False, 'url': 'https://doi.org/10.1080/10715760000301151'}, {'type': 'PubMed', 'value': '11200094', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11200094/'}]}
- Baba S, Osakabe N, Yasuda A, Natsume M, Takizawa T, Nakamura T, Terao J. Bioavailability of (−)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic. Res. 2000; 33: 635–641. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11237200', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11237200/'}]}
- Miyazawa T. Absorption, metabolism and antioxidative effects of tea catechin in humans. Biofactors 2000; 13: 55–59. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11385060', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11385060/'}]}
- Warden BA, Smith LS, Beecher GR, Balentine DA, Clevidence BA. Catechins Are Bioavailable in Men and Women Drinking Black Tea throughout the Day. J. Nutr. 2001; 131: 1731–1737. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '6497500', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/6497500/'}]}
- Viswanathan S, Thirugnana Sambantham P, Bapna JS, Kameswaran L. Flavonoid-induced delay in the small intestinal transit: possible mechanism of action. Arch. Int. Pharmacodyn. Ther. 1984; 270: 151–157. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '7908974', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7908974/'}]}
- Di Carlo G, Autore G, Izzo AA, Maiolino P, Mascolo N, Viola P, Diurno MV, Capasso F. Inhibition of intestinal motility and secretion by flavonoids in mice and rats: structure-activity relationships. J. Pharm. Pharmacol. 1993; 45: 1054–1059. - PubMed
LinkOut - more resources
Full Text Sources