The endocrine disruptive effects of mercury
- PMID: 21432482
- PMCID: PMC2723593
- DOI: 10.1007/BF02931255
The endocrine disruptive effects of mercury
Abstract
Mercury, identified thousands of years ago is one of the oldest toxicants known. The endocrine disruptive effects of mercury have recently become one of the major public concerns. In this report, the adverse effects of mercury on the hypothalamus, pituitary, thyroid, adrenal gland, and gonads (testis and ovary) in laboratory animals as well as in humans are reviewed. The effects of both environmental and occupational exposures to organic, inorganic, or metallic mercury are explained. There is sufficient evidence from animal studies supporting the disruptive effects of mercurials on the functions of the thyroid, adrenal, ovary, and testis, although several factors make it difficult to extrapolate the animal data to the human situation. However, the human studies performed so far, which focused mainly on serum hormone levels, failed to provide any conclusive data to confirm the findings from the animal studies. Therefore, further well-designed epidemiological studies are urgently needed. The possible mechanisms of the toxic effects are also discussed. The broad enzyme inhibition and the influence on the combining of hormones by their receptors, which seem due to its avid binding to sulphydryl, may account for the primary mechanism. The interference with intracellular calcium metabolism, and peroxidation may also be involved.
Keywords: hormone; mercury; ovary; pituitary/thyroid/adrenal gland; testis.
Similar articles
-
Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function.Hum Exp Toxicol. 1991 May;10(3):199-203. doi: 10.1177/096032719101000309. Hum Exp Toxicol. 1991. PMID: 1678950
-
Effects of acute exposure to microcystins on hypothalamic-pituitary-adrenal (HPA), -gonad (HPG) and -thyroid (HPT) axes of female rats.Sci Total Environ. 2021 Jul 15;778:145196. doi: 10.1016/j.scitotenv.2021.145196. Epub 2021 Feb 10. Sci Total Environ. 2021. PMID: 34030373
-
Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis.Aquat Toxicol. 2016 Aug;177:417-24. doi: 10.1016/j.aquatox.2016.06.018. Epub 2016 Jun 23. Aquat Toxicol. 2016. PMID: 27391360
-
Pineal factors in the control of testicular function.Adv Sex Horm Res. 1976;2:87-139. Adv Sex Horm Res. 1976. PMID: 797250 Review.
-
Occupational and environmental agents as endocrine disruptors: experimental and human evidence.J Endocrinol Invest. 2000 Dec;23(11):771-81. doi: 10.1007/BF03345069. J Endocrinol Invest. 2000. PMID: 11194713 Review.
Cited by
-
Instant Mercury Ion Detection in Industrial Waste Water with a Microchip Using Extended Gate Field-Effect Transistors and a Portable Device.Sensors (Basel). 2019 May 13;19(9):2209. doi: 10.3390/s19092209. Sensors (Basel). 2019. PMID: 31086067 Free PMC article.
-
Imperatorin as an activator of Nrf2/ARE in mercury-induced brain damage based on rat model study, molecular docking, and molecular simulation approaches.Naunyn Schmiedebergs Arch Pharmacol. 2025 Jun 11. doi: 10.1007/s00210-025-04280-y. Online ahead of print. Naunyn Schmiedebergs Arch Pharmacol. 2025. PMID: 40498094
-
Temporary Thyroid Dysfunction and Catecholamine Excess Due to Mercury Poisoning in 6 Cases.Turk Arch Pediatr. 2024 Jan 2;59(1):23-30. doi: 10.5152/TurkArchPediatr.2023.23150. Turk Arch Pediatr. 2024. PMID: 37818842 Free PMC article.
-
Evaluation of the effects of chronic occupational exposure to metallic mercury on the thyroid parenchyma and hormonal function.Int Arch Occup Environ Health. 2020 May;93(4):491-502. doi: 10.1007/s00420-019-01499-0. Epub 2019 Dec 12. Int Arch Occup Environ Health. 2020. PMID: 31832764
-
Disease-associated metabolic pathways affected by heavy metals and metalloid.Toxicol Rep. 2023 Apr 24;10:554-570. doi: 10.1016/j.toxrep.2023.04.010. eCollection 2023. Toxicol Rep. 2023. PMID: 37396849 Free PMC article. Review.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1021/jf60172a019', 'is_inner': False, 'url': 'https://doi.org/10.1021/jf60172a019'}, {'type': 'PubMed', 'value': '5483049', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/5483049/'}]}
- Bitman J, Cecil HC. Estrogenic activity of DDT analogs and polychlorinated biphenyls. J Agr Food Chem 1970; 18: 1108–12. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '351202', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/351202/'}]}
- Nelson JA, Struck RF, James R. Estrogenic activities of chlorinated hydrocarbons. J Toxicol Environ Health 1978; 4: 325–39. - PubMed
-
- None
- Mclachlan JA. Estrogens in the environment. Amsterdam: Elsevier, 1980.
-
- None
- Mclachlan JA. Estrogens in the environment. II: Influence on Development. Amsterdam: Elsevier, 1985.
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC1518859', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1518859/'}, {'type': 'PubMed', 'value': '8593871', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8593871/'}]}
- Mclachlan JA, Korach KS. Symposium on estrogens in the environment, II. Environ Health Perspect 1995; 103 (Suppl 7): 3–4. - PMC - PubMed
LinkOut - more resources
Full Text Sources