The spatial distribution of ross river virus infections in Brisbane: Significance of residential location and relationships with vegetation types
- PMID: 21432483
- PMCID: PMC2723594
- DOI: 10.1007/BF02931256
The spatial distribution of ross river virus infections in Brisbane: Significance of residential location and relationships with vegetation types
Abstract
For the study area of Brisbane City (population 800,000), Australia, 2160 cases of Ross River virus (RRv) infections from the years 1991 to 1996 were geocoded. Their spatial distribution was investigated using census data at the suburb level (162 units). Infection rates have been calculated and adjusted to the age distribution within each suburb. Signed chi-square tests showed that a large number of suburbs has significantly high or low infection rates. Using Principal Component Factor analysis and regression, a relationship was shown between the proportion of wetlands and bushland in a suburb and the infection rate of RRv. Although flight ranges of up to 50 km have been reported for the major vector speciesAedes vigilax (Skuse), this study indicated that RRv infection risk is significantly high relatively close to mosquito habitats. There were significant differences in the infection rate of RRv between years, however the spatial associations did not appear to differ.
Keywords: Ross river virus; arbovirus; mosquitoes; spatial distribution; vegetation.
Similar articles
-
Difference in mosquito species (Diptera: Culicidae) and the transmission of Ross River virus between coastline and inland areas in Brisbane, Australia.Environ Entomol. 2010 Feb;39(1):88-97. doi: 10.1603/EN07037. Environ Entomol. 2010. PMID: 20146843
-
Spatial and temporal patterns of Ross River virus in south east Queensland, Australia: identification of hot spots at the rural-urban interface.BMC Infect Dis. 2020 Oct 2;20(1):722. doi: 10.1186/s12879-020-05411-x. BMC Infect Dis. 2020. PMID: 33008314 Free PMC article.
-
Ross River virus disease clusters and spatial relationship with mosquito biting exposure in Redland Shire, southern Queensland, Australia.J Med Entomol. 2006 Sep;43(5):1042-59. doi: 10.1603/0022-2585(2006)43[1042:rrvdca]2.0.co;2. J Med Entomol. 2006. PMID: 17017245
-
Ross River Virus Infection of Horses: Appraisal of Ecological and Clinical Consequences.J Equine Vet Sci. 2020 Oct;93:103143. doi: 10.1016/j.jevs.2020.103143. Epub 2020 May 30. J Equine Vet Sci. 2020. PMID: 32972681 Review.
-
Ross River Virus (RRV) infection in horses and humans: a review.Pak J Biol Sci. 2014 Jun;17(6):768-79. doi: 10.3923/pjbs.2014.768.779. Pak J Biol Sci. 2014. PMID: 26035950 Review.
Cited by
-
Proximity to mosquito breeding habitat and Ross River virus risk in the Peel region of Western Australia.Vector Borne Zoonotic Dis. 2015 Feb;15(2):141-6. doi: 10.1089/vbz.2014.1693. Vector Borne Zoonotic Dis. 2015. PMID: 25700045 Free PMC article.
-
Ascertainment of Community Exposure Sites to Ross River Virus During the 2020 Outbreak in Brisbane, Australia.J Infect Dis. 2025 Mar 17;231(3):e501-e510. doi: 10.1093/infdis/jiae578. J Infect Dis. 2025. PMID: 39589115 Free PMC article.
-
Mosquito and Virus Surveillance as a Predictor of Human Ross River Virus Infection in South-West Western Australia: How Useful Is It?Am J Trop Med Hyg. 2018 Oct;99(4):1066-1073. doi: 10.4269/ajtmh.18-0459. Am J Trop Med Hyg. 2018. PMID: 30182918 Free PMC article.
-
Climate variability, social and environmental factors, and ross river virus transmission: research development and future research needs.Environ Health Perspect. 2008 Dec;116(12):1591-7. doi: 10.1289/ehp.11680. Epub 2008 Jul 24. Environ Health Perspect. 2008. PMID: 19079707 Free PMC article. Review.
-
Ross River virus risk associated with dispersal of Aedes (Ochlerotatus) camptorhynchus (Thomson) from breeding habitat into surrounding residential areas: muddy lakes, Western Australia.Am J Trop Med Hyg. 2014 Jul;91(1):101-108. doi: 10.4269/ajtmh.13-0399. Epub 2014 May 5. Am J Trop Med Hyg. 2014. PMID: 24799370 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '8203702', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/8203702/'}]}
- Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U. Geographic information system in malaria surveillance: mosquito breeding and imported cases in Israel. Am J Trop Med Hyg 1994; 50: 550–6. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0167-5877(05)80001-7', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0167-5877(05)80001-7'}]}
- Hugh-Jones, M. Introductory remarks on the application of remote sensing and geographic information systems to epidemiology and disease control. Prev Vet Med 1991; 11: 159–61.
-
- Freier JE. Eastern Equine Encephalitis in Florida: the use of Geographic Information Systems. Paper presented at the 59th annual meeting of the American Mosquito Control Assoc. April 1993.
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PMC', 'value': 'PMC2486751', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2486751/'}, {'type': 'PubMed', 'value': '7743598', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7743598/'}]}
- Mott KE, Nuttall I, Desjeux P, Cattand P. New geographical approaches to control of some parasitic zoonoses. Bull World Health Organ 1995; 73: 247–57. - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '9347966', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9347966/'}]}
- Kitron U, Michael J, Swanson J, Haramis L. Spatial analysis of the distribution of LaCrosse encephalitis in Illinois, using a geographic information system and local and global spatial statistics. Am J Trop Med Hyg 1997; 57: 469–75. - PubMed
LinkOut - more resources
Full Text Sources