Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 18;6(3):e17876.
doi: 10.1371/journal.pone.0017876.

Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers

Affiliations

Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers

Yao-Tseng Chen et al. PLoS One. .

Abstract

Background: Cancer/testis (CT) antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for "CT-rich" tumors. Although some previous studies found breast cancer to be "CT-poor", our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer.

Methodology/principal findings: In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative) carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them--MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12-24% of ER-negative cancers, versus 2-6% of ER-positive cancers (p<0.001 to 0.003). In comparison, GAGE, SAGE1 and NXF2 were only expressed in 3-5% of ER-negative and 0-2% of ER-positive cancers. ER-negative cancers were also more likely to simultaneously co-express multiple CT antigens, with 27% (34/125) of ER-negative, CT-positive tumors expressing three or more CT antigens. HER2 status had no consistent effect on CT expression, and triple-negative carcinomas showed similar frequencies of MAGEA and NY-ESO-1 expression as ER-negative/HER2-positive carcinomas. More frequent CT expression was also found in tumors with higher nuclear grade (p<0.001 to p = 0.01) and larger in size (>2 cm).

Conclusions/significance: CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Immunohistochemical analysis of CT antigen expression in breast cancer.
Eight CT antigens were analyzed– MAGEA (A), NY-ESO-1 (B), CT7 (C), CT10 (D), CT45 (E), GAGE (F), NXF2 (G) and SAGE1 (H). Of these, MAGEA, NY-ESO-1, CT7 and GAGE showed mixed nuclear and cytoplasmic staining, whereas CT10, CT45, NXF2 and SAGE1 were purely or predominantly nuclear proteins. (Magnifications: 400X).
Figure 2
Figure 2. Variations in cellular and subcellular distributions of CT antigens in breast cancer.
(A, B): NY-ESO-1 staining of two ER-negative carcinomas, showing mixed nuclear and cytoplasmic staining in (A) and pure cytoplasmic staining in (B). (C, D): MAGEA staining of two ER-negative carcinomas, showing predominantly nuclear (C) and cytoplasmic (D) staining, respectively. (E, F): CT7 staining in two cases, showing diffuse positivity in >90% of tumor cells in (E), as compared to (F) which showed only scattered positive cells and many tumor cells were negative. (Magnifications: 400X).
Figure 3
Figure 3. Distribution of immunohistochemical reactivity percentages among CT-positive breast cancer.
The immunoreactivity in each positive case was given an extent score (1, <10% cells positive; 2, 10-50% cells positive; 3, >50% cells positive) and an intensity score (1, +; 2, ++; 3, +++). A combined score of 2 is considered weak positive, 3 to 4 as moderate, and 5 to 6 as strong positive. Most CT-positive cases showed moderate to strong reactivity, but CT7 and CT10 had more weak positive cases, see text.
Figure 4
Figure 4. Distribution of CT antigen expression percentages in ER-positive and ER-negative breast cancer.
Comparisons were carried out for each CT antigen between ER+HER2- and ER-HER2- cases and between all ER+ and ER- cases. Significant differences were found for all comparisons (P<0.005).
Figure 5
Figure 5. Distribution of cases expressing one, two or multiple CT antigens among all CT–positive cases in percentage.
Significantly greater proportion of ER negative tumors expressed ≥3 antigens when compared to ER+ tumors (P = 0.026).
Figure 6
Figure 6. Distribution of CT antigen expression percentages in HER2 positive and HER2 negative breast cancer.
Comparisons were carried out for each CT antigen between the ER-HER2+ and the ER-HER2- (triple-negative) cases and between all HER2+ and HER2- cases. Significant differences were found for both comparisons for CT7 and CT45 only (P≤0.01), with CT7 more frequently expressed in HER2-positive tumors, whereas CT45 more frequently in HER2-negative tumors.

Similar articles

Cited by

References

    1. Boon T, Coulie PG, Van den Eynde B. Tumor antigens recognized by T cells. Immunol Today. 1997;18:267–268. - PubMed
    1. Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci. 2009;100:2014–2021. - PMC - PubMed
    1. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev. 2002;188:22–32. - PubMed
    1. Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 2005;5:615–625. - PubMed
    1. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–1647. - PubMed

Publication types

MeSH terms