The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality
- PMID: 21437650
- DOI: 10.1007/s00442-011-1963-7
The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality
Abstract
Ecological stoichiometry has advanced food web ecology by emphasising the importance of food quality over food quantity for herbivores. Here, we focus on the effects of abiotic factors such as nutrients and light (known to influence food quality) on grazer growth rates. As model organism we used the mudsnail Potamopyrgus antipodarum that is native to New Zealand but invasive elsewhere. In a stream channel experiment in New Zealand, we manipulated light (two levels) and nutrients (four levels) to achieve a range of primary producer carbon: nutrient ratios and added mudsnails (3 densities + ungrazed control) to 128 periphyton covered stream channels in a 2 × 4 × 4 full factorial design. We measured snail growth rate and activity, food quality and nutritional imbalance, to test the predictions that (1) less light and more nutrients increase periphyton food quality and thus snail growth rates, and (2) less crowding leads to higher food availability and thus higher snail growth rates. We found that snail growth rates were higher under low light than under high light intensities and this difference increased with increasing nutrient addition. These changes in growth rate were not mediated by food quality in terms of periphyton nutrient ratios. Furthermore, experimental treatments strongly affected snail behaviour. Snails grazed more actively in the low light treatments, and thus it is more likely that snail growth rates were directly affected by light levels, maybe as a result of innate predator avoidance behaviour or as a reaction to high UV intensities. We conclude that in our stream channels snail growth rate was limited by factors other than food quality and quantity such as UV exposure, algal defences or the relatively low ambient water temperature.
Similar articles
-
Light, nutrients, and herbivore growth in oligotrophic streams.Ecology. 2010 Feb;91(2):518-27. doi: 10.1890/09-0703.1. Ecology. 2010. PMID: 20392016
-
Extremely high secondary production of introduced snails in rivers.Ecol Appl. 2006 Jun;16(3):1121-31. doi: 10.1890/1051-0761(2006)016[1121:ehspoi]2.0.co;2. Ecol Appl. 2006. PMID: 16827007
-
Phosphorus-mediated changes in life history traits of the invasive New Zealand mudsnail (Potamopyrgus antipodarum).Oecologia. 2010 Jul;163(3):549-59. doi: 10.1007/s00442-009-1522-7. Epub 2009 Dec 22. Oecologia. 2010. PMID: 20033217
-
Prosobranch snails as test organisms for the assessment of endocrine active chemicals--an overview and a guideline proposal for a reproduction test with the freshwater mudsnail Potamopyrgus antipodarum.Ecotoxicology. 2007 Feb;16(1):169-82. doi: 10.1007/s10646-006-0106-0. Ecotoxicology. 2007. PMID: 17219090 Review.
-
Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change.Environ Sci Pollut Res Int. 2009 Sep;16(6):714-26. doi: 10.1007/s11356-009-0176-7. Epub 2009 May 22. Environ Sci Pollut Res Int. 2009. PMID: 19462191 Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials