Corynebacterium glutamicum tailored for efficient isobutanol production
- PMID: 21441331
- PMCID: PMC3126470
- DOI: 10.1128/AEM.02972-10
Corynebacterium glutamicum tailored for efficient isobutanol production
Abstract
We recently engineered Corynebacterium glutamicum for aerobic production of 2-ketoisovalerate by inactivation of the pyruvate dehydrogenase complex, pyruvate:quinone oxidoreductase, transaminase B, and additional overexpression of the ilvBNCD genes, encoding acetohydroxyacid synthase, acetohydroxyacid isomeroreductase, and dihydroxyacid dehydratase. Based on this strain, we engineered C. glutamicum for the production of isobutanol from glucose under oxygen deprivation conditions by inactivation of l-lactate and malate dehydrogenases, implementation of ketoacid decarboxylase from Lactococcus lactis, alcohol dehydrogenase 2 (ADH2) from Saccharomyces cerevisiae, and expression of the pntAB transhydrogenase genes from Escherichia coli. The resulting strain produced isobutanol with a substrate-specific yield (Y(P/S)) of 0.60 ± 0.02 mol per mol of glucose. Interestingly, a chromosomally encoded alcohol dehydrogenase rather than the plasmid-encoded ADH2 from S. cerevisiae was involved in isobutanol formation with C. glutamicum, and overexpression of the corresponding adhA gene increased the Y(P/S) to 0.77 ± 0.01 mol of isobutanol per mol of glucose. Inactivation of the malic enzyme significantly reduced the Y(P/S), indicating that the metabolic cycle consisting of pyruvate and/or phosphoenolpyruvate carboxylase, malate dehydrogenase, and malic enzyme is responsible for the conversion of NADH + H+ to NADPH + H+. In fed-batch fermentations with an aerobic growth phase and an oxygen-depleted production phase, the most promising strain, C. glutamicum ΔaceE Δpqo ΔilvE ΔldhA Δmdh(pJC4ilvBNCD-pntAB)(pBB1kivd-adhA), produced about 175 mM isobutanol, with a volumetric productivity of 4.4 mM h⁻¹, and showed an overall Y(P/S) of about 0.48 mol per mol of glucose in the production phase.
Figures






Similar articles
-
Fermentative production of isobutene.Appl Microbiol Biotechnol. 2012 Feb;93(4):1377-87. doi: 10.1007/s00253-011-3853-7. Epub 2012 Jan 11. Appl Microbiol Biotechnol. 2012. PMID: 22234536 Free PMC article. Review.
-
Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway.Metab Eng. 2020 May;59:24-35. doi: 10.1016/j.ymben.2020.01.004. Epub 2020 Jan 8. Metab Eng. 2020. PMID: 31926306
-
Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.Biotechnol Bioeng. 2013 Nov;110(11):2938-48. doi: 10.1002/bit.24961. Epub 2013 Jun 6. Biotechnol Bioeng. 2013. PMID: 23737329
-
Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.Appl Environ Microbiol. 2013 Sep;79(18):5566-75. doi: 10.1128/AEM.01741-13. Epub 2013 Jul 8. Appl Environ Microbiol. 2013. PMID: 23835179 Free PMC article.
-
The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.J Biotechnol. 2014 Dec 20;192 Pt B:339-45. doi: 10.1016/j.jbiotec.2013.12.019. Epub 2014 Jan 29. J Biotechnol. 2014. PMID: 24486441 Review.
Cited by
-
Bio-based production of organic acids with Corynebacterium glutamicum.Microb Biotechnol. 2013 Mar;6(2):87-102. doi: 10.1111/1751-7915.12013. Epub 2012 Dec 2. Microb Biotechnol. 2013. PMID: 23199277 Free PMC article. Review.
-
Fermentative production of isobutene.Appl Microbiol Biotechnol. 2012 Feb;93(4):1377-87. doi: 10.1007/s00253-011-3853-7. Epub 2012 Jan 11. Appl Microbiol Biotechnol. 2012. PMID: 22234536 Free PMC article. Review.
-
Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering.Eng Life Sci. 2016 Nov 11;17(1):27-35. doi: 10.1002/elsc.201600108. eCollection 2017 Jan. Eng Life Sci. 2016. PMID: 32624726 Free PMC article. Review.
-
Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.Appl Environ Microbiol. 2015 Mar;81(6):1996-2005. doi: 10.1128/AEM.03116-14. Epub 2015 Jan 9. Appl Environ Microbiol. 2015. PMID: 25576602 Free PMC article.
-
Arabitol metabolism of Corynebacterium glutamicum and its regulation by AtlR.J Bacteriol. 2012 Mar;194(5):941-55. doi: 10.1128/JB.06064-11. Epub 2011 Dec 16. J Bacteriol. 2012. PMID: 22178972 Free PMC article.
References
-
- Atsumi S., Hanai T., Liao J. C. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89 - PubMed
-
- Becker J., et al. 2007. Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J. Biotechnol. 132:99–109 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases