Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 17;29(22):3895-904.
doi: 10.1016/j.vaccine.2011.03.038. Epub 2011 Apr 13.

A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness

Affiliations

A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness

V J Gunther et al. Vaccine. .

Abstract

Dengue has recently been defined by the World Health Organization as a major international public health concern. Although several vaccine candidates are in various stages of development, there is no licensed vaccine available to assist in controlling the further spread of this mosquito borne disease. The need for a reliable animal model for dengue disease increases the risk to vaccine developers as they move their vaccine candidates into large-scale phase III testing. In this paper we describe the cellular immune responses observed in a human challenge model for dengue infection; a model that has the potential to provide efficacy data for potential vaccine candidates in a controlled setting. Serum levels of sIL-2Rα and sTNF-RII were increased in volunteers who developed illness. Supernatants from in vitro stimulated PBMC were tested for cytokines associated with a T(H)1 or T(H)2 T-cell response (IL-2, TNF-α, IFN-γ, IL-4, IL-10, IL-5) and only IFN-γ was associated with protection against fever and/or viremia. Interestingly, IFN-γ levels drop to 0 pg/mL for volunteers who develop illness after challenge suggesting that some mechanism of immunosuppression may play a role in dengue illness. The human challenge model provides an opportunity to test potential vaccine candidates for efficacy prior to large-scale phase III testing, and hints at a possible mechanism for immune suppression by dengue.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources