Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan;47(1):41-7.

[Spontaneous spectinomycin resistance mutations of the chloroplast rrn16 gene in Daucus carota callus lines]

[Article in Russian]
  • PMID: 21446181

[Spontaneous spectinomycin resistance mutations of the chloroplast rrn16 gene in Daucus carota callus lines]

[Article in Russian]
E A Filipenko et al. Genetika. 2011 Jan.

Abstract

Bioballistic transformation of carrot Daucus carota L. callus cultures with a plasmid containing the aadA (aminoglycoside 3'-adenyltransferase) gene and subsequent selection oftransformants on a selective medium containing spectinomycin (100-500 mg/l) yielded ten callus lines resistant to this antibiotic. PCR analysis did not detect exogenous DNA in the genomes of spectinomycin-resistant calluses. Resistance proved to be due to spontaneous mutations that occurred in two different regions of the chloroplast rrn16 gene, which codes for the 16S rRNA. Six lines displayed the G > T or G > C transverions in position 1012 of the rrn16 gene, and three lines had the A > G transition in position 1138 of the gene. Chloroplast mutations arising during passages of callus cultures in the presence of spectinomycin were described in D. carota for the first time. The cause of spectinomycin resistance was not identified in one line. The mutations observed in the D. carota plastid genome occurred in the region that is involved in the formation of a double-stranded region at the 3' end of the 16S rRNA and coincided in positions with the nucleotide substitutions found in spectinomycin-resistant plants of tobacco Nicotiana tabacum L. and bladderpod Lesquerella fendleri L.

PubMed Disclaimer

Similar articles

Cited by

Publication types