Mammalian phospholipase D physiological and pathological roles
- PMID: 21447092
- PMCID: PMC3137737
- DOI: 10.1111/j.1748-1716.2011.02298.x
Mammalian phospholipase D physiological and pathological roles
Abstract
Phospholipase D (PLD), a superfamily of signalling enzymes that most commonly generate the lipid second messenger phosphatidic acid, is found in diverse organisms from bacteria to humans and functions in multiple cellular pathways. Since the early 1980s when mammalian PLD activities were first described, most of the important insights concerning PLD function have been gained from studies on cellular models. Reports on physiological and pathophysiological roles for members of the mammalian PLD superfamily are now starting to emerge from genetic models. In this review, we summarize recent findings on PLD functions in these model systems, highlighting newly appreciated connections of the superfamily to cancer, neuronal pathophysiology, cardiovascular topics, spermatogenesis and infectious diseases.
© 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Conflict of interest statement
The authors do not declare any conflicts of interest.
Figures
References
-
- Bi K, Roth MG, Ktistakis NT. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr Biol. 1997;7:301–307. - PubMed
-
- Brandenburg LO, Konrad M, Wruck C, Koch T, Pufe T, Lucius R. Involvement of formyl-peptide-receptor-like-1 and phospholipase D in the internalization and signal transduction of amyloid beta 1–42 in glial cells. Neurosci. 2008;156:266–276. - PubMed
-
- Brown FD, Thompson N, Saqib KM, Clark JM, Powner D, Thompson NT, Solari R, Wakelam MJ. Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol. 1998;8:835–838. - PubMed
-
- Cai D, Zhong M, Wang R, Netzer WJ, Shields D, Zheng H, Sisodia SS, Foster DA, Gorelick FS, Xu H, Greengard P. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci U S A. 2006b;103:1936–1940. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
