Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 29:11:56.
doi: 10.1186/1471-2229-11-56.

Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

Affiliations

Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

Abhishek Bohra et al. BMC Plant Biol. .

Abstract

Background: Pigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea.

Results: A set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme.

Conclusion: In summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Annotation pipeline for analysis of BESs. This pipeline resulted in selection of non-redundant genomic BAC-ends which excluded organeller sequences, and further identification, annotation of non-redundant sequences together with SSR discovery, selection and primer designing.
Figure 2
Figure 2
Distribution of BAC end categories according to BES cluster depth. Cluster depth supported the repetitive nature of mobile genetic elements while genic regions were mostly associated with less repetitive sequences.
Figure 3
Figure 3
Distribution and frequency of SSRs in differing genome fractions. Maximum frequency and maximum amount of SSRs was exhibited by non annotated regions followed by the regions containing 'genes'.
Figure 4
Figure 4
Reference genetic map of pigeonpea derived from an inter-specific F2 population (ICP 28 × ICPW 94). Initially, a skeleton map with normally segregating markers was constructed using MAPMAKER/EXP 3.0 while further integration of additional markers was performed with Joinmap 3.0 by keeping the mapmaker order as "fixed". Distances between the loci (in cM) are shown to the left of the linkage group and all the loci at the right side of the map.
Figure 5
Figure 5
Electropherogram display for the multiplex set MG 1 for purity assessment of hybrid ICPH 2671. This figure shows the analysis (GENEMAPPER output) of seven SSR markers of MG1 for ICPH 2671 in a single capillary. SSR markers labeled with the same fluorescence dye are analyzed in individual panels. A. Analysis of two VIC (green) labeled SSR markers, B. Two NED (black) labeled SSR markers, C. One PET (red) labeled SSR markers, and D. Analysis of two FAM (blue) labeled SSR markers.

References

    1. Greilhuber J, Obermayer R. Genome size variation in Cajanus cajan (Fabaceae): a reconsideration. Plant Syst Evol. 1998;212:135–141. doi: 10.1007/BF00985225. - DOI
    1. van der Maesen LJG. In: Pigeonpea. Nene YL, Hall SD, Sheila VK, editor. Wallingford: CAB International; 1990. Pigeonpea: origin, history, evolution and taxonomy; pp. 15–46.
    1. Reddy LJ, Faris DG. A cytoplasmic male sterile line in pigeonpea. International Pigeonpea Newslett. 1981;1:16–17.
    1. Marley PS, Hillocks RJ. Effect of root-knot nematodes (Meloidogyne spp.) on Fusarium wilt in pigeonpea (Cajanus cajan) Field Crop Res. 1996;46:15–20. doi: 10.1016/0378-4290(95)00083-6. - DOI
    1. Saxena KB, Sultana R, Mallikarjuna N, Saxena RK, Kumar RV, Sawargaonkar SL, Varshney RK. Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breed. 2010;129:125–134. doi: 10.1111/j.1439-0523.2009.01752.x. - DOI

Publication types

Substances