Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Mar 31:12:89.
doi: 10.1186/1471-2105-12-89.

Learning genetic epistasis using Bayesian network scoring criteria

Affiliations

Learning genetic epistasis using Bayesian network scoring criteria

Xia Jiang et al. BMC Bioinformatics. .

Abstract

Background: Gene-gene epistatic interactions likely play an important role in the genetic basis of many common diseases. Recently, machine-learning and data mining methods have been developed for learning epistatic relationships from data. A well-known combinatorial method that has been successfully applied for detecting epistasis is Multifactor Dimensionality Reduction (MDR). Jiang et al. created a combinatorial epistasis learning method called BNMBL to learn Bayesian network (BN) epistatic models. They compared BNMBL to MDR using simulated data sets. Each of these data sets was generated from a model that associates two SNPs with a disease and includes 18 unrelated SNPs. For each data set, BNMBL and MDR were used to score all 2-SNP models, and BNMBL learned significantly more correct models. In real data sets, we ordinarily do not know the number of SNPs that influence phenotype. BNMBL may not perform as well if we also scored models containing more than two SNPs. Furthermore, a number of other BN scoring criteria have been developed. They may detect epistatic interactions even better than BNMBL.Although BNs are a promising tool for learning epistatic relationships from data, we cannot confidently use them in this domain until we determine which scoring criteria work best or even well when we try learning the correct model without knowledge of the number of SNPs in that model.

Results: We evaluated the performance of 22 BN scoring criteria using 28,000 simulated data sets and a real Alzheimer's GWAS data set. Our results were surprising in that the Bayesian scoring criterion with large values of a hyperparameter called α performed best. This score performed better than other BN scoring criteria and MDR at recall using simulated data sets, at detecting the hardest-to-detect models using simulated data sets, and at substantiating previous results using the real Alzheimer's data set.

Conclusions: We conclude that representing epistatic interactions using BN models and scoring them using a BN scoring criterion holds promise for identifying epistatic genetic variants in data. In particular, the Bayesian scoring criterion with large values of a hyperparameter α appears more promising than a number of alternatives.

PubMed Disclaimer

Figures

Figure 1
Figure 1
An example BN. A BN that models lung disorders. This BN is intentionally simple to illustrate concepts; it is not intended to be clinically complete.
Figure 2
Figure 2
An example DAG. A DAG showing probabilistic relationships among SNPs and a disease D.
Figure 3
Figure 3
An example DDAG. A DDAG showing probabilistic relationships between SNPs and a disease D. A DDAG differs from the DAG in Figure 2 in that the relationships among the SNPs are not represented.

Similar articles

Cited by

References

    1. Bateson W. Mendel's Principles of Heredity. New York; Cambridge University Press; 1909.
    1. Moore JH, Williams SM. New strategies for identifying gene gene interactions in hypertension. Annals of Medicine. 2002;34:88–95. doi: 10.1080/07853890252953473. 2002. - DOI - PubMed
    1. Ritchie MD. et al.Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics. 2001;69:138–147. doi: 10.1086/321276. - DOI - PMC - PubMed
    1. Nagel RI. Epistasis and the genetics of human diseases. C R Biologies. 2005;328:606–615. doi: 10.1016/j.crvi.2005.05.003. - DOI - PubMed
    1. Armes BM. et al.The histologic phenotypes of breast carcinoma occurring before age 40 years in women with and without BRCA1 or BRCA2 germline mutations. Cancer. 2000;83:2335–2345. doi: 10.1002/(SICI)1097-0142(19981201)83:11<2335::AID-CNCR13>3.0.CO;2-N. - DOI - PubMed

Publication types