Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Feb;11(1):152-6.
doi: 10.3816/CLML.2011.n.036.

Histone deacetylase inhibitors demonstrate significant preclinical activity as single agents, and in combination with bortezomib in Waldenström's macroglobulinemia

Affiliations

Histone deacetylase inhibitors demonstrate significant preclinical activity as single agents, and in combination with bortezomib in Waldenström's macroglobulinemia

Jenny Y Sun et al. Clin Lymphoma Myeloma Leuk. 2011 Feb.

Abstract

We studied the role of histone deacetylase inhibitors in Waldenstrom's macroglobulinemia (WM). Gene expression profiling of bone marrow CD19+ cells from 30 patients and 10 healthy donors showed overexpression of HDAC4, HDAC9, and Sirt5, with validation of HDAC9 overexpression by q-PCR in primary and BCWM.1 cells. Suberoylanilide hydroxamic acid, trichostatin A, panobinostat, and sirtinol demonstrated dose-dependent killing of BCWM.1 cells. TSA showed the greatest potency with IC50 of 70 nM. Importantly, HDAC9 activity was decreased following TSA treatment suggesting an essential role for this HDAC in WM therapy. The combination of bortezomib plus HDAC inhibitors resulted in at least additive tumor cell killing in BCWM.1 cells. TSA and bortezomib-induced apoptosis depended on a similar set of caspase activation, whereas their effect on cell cycle regulators was distinctly different. These results provided a framework for examining HDAC inhibitors as monotherapy, as well as combination therapy with bortezomib in WM.

PubMed Disclaimer

Publication types

MeSH terms