NADPH-oxidase activation and cognition in Alzheimer disease progression
- PMID: 21457777
- PMCID: PMC3109185
- DOI: 10.1016/j.freeradbiomed.2011.03.025
NADPH-oxidase activation and cognition in Alzheimer disease progression
Abstract
Superoxide production via NADPH-oxidase (NOX) has been shown to play a role in a variety of neurological disorders, including Alzheimer disease (AD). To improve our understanding of the NOX system and cognitive impairment, we studied the various protein components of the phagocytic isoform (gp91(phox), or NOX2) in the frontal and temporal cortex of age- and postmortem-matched samples. Individuals underwent antemortem cognitive testing and postmortem histopathologic assessment to determine disease progression and assignment to one of the following groups: no cognitive impairment (NCI), preclinical AD, mild cognitive impairment (MCI), early AD, and mild-to-moderate AD. Biochemical methods were used to determine overall NOX activity as well as levels of the various subunits (gp91(phox), p67(phox), p47(phox), p40(phox), and p22(phox)). Overall enzyme activity was significantly elevated in the MCI cohort in both cortical regions compared to the NCI cohort. This activity level remained elevated in the AD groups. Only the NOX cytosolic subunit proteins (p67(phox), p47(phox), and p40(phox) ) were significantly elevated with disease progression; the membrane-bound subunits (gp91(phox) and p22(phox)) remained stable. In addition, there was a robust correlation between NOX activity and the individual's cognitive status such that as the enzyme activity increased, cognitive performance decreased. Collectively, these data show that upregulated NADPH-oxidase in frontal and temporal cortex suggests that increases in NOX-associated redox pathways might participate in early pathogenesis and contribute to AD progression.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures
References
-
- Scheff SW, Price DA. Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis. 2006;9:101–115. - PubMed
-
- Petersen RC, Morris JC. Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol. 2005;62:1160–1163. discussion 1167. - PubMed
-
- Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240–246. - PubMed
-
- Morris JC, Storandt M, McKeel SW, Rubin eH, Price JL, Grant EA, Berg L. Cerebral amyloid deposition and diffuse plaques in “normal” aging: Evidence for presymptomatic and very mild Alzheimer’s disease. Neurology. 1996;46:707–719. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
