Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jun;81(6):1165-72.
doi: 10.1016/j.ejrad.2011.03.022. Epub 2011 Mar 31.

Super-micro-bland particle embolization combined with RF-ablation: angiographic, macroscopic and microscopic features in porcine kidneys

Affiliations

Super-micro-bland particle embolization combined with RF-ablation: angiographic, macroscopic and microscopic features in porcine kidneys

C M Sommer et al. Eur J Radiol. 2012 Jun.

Abstract

Purpose: To describe angiographic, macroscopic and microscopic features of super-micro-bland particle embolization in combination with RF-ablation in kidneys. Thereby, a special focus was given on the impact of the sequence of the different procedural steps.

Materials and methods: In ten pigs, super-micro-bland particle embolization combined with RF-ablation was carried out. Super-micro-bland embolization was performed with spherical particles of very small size and tight calibration (40 ± 10 μm). In the left kidneys, RF-ablations were performed before embolization (I). In the right kidneys, RF-ablations were performed after embolization (II). The animals were killed three hours after the procedures. Angiographic (e.g. vessel architecture), macroscopic (e.g. long and short axes of the RF-ablations) and microscopic (e.g. particle distribution) study goals were defined.

Results: Angiography detected almost no vessels in the center of the RF-ablations in I. In II, angiography could not define the RF-ablations. Macroscopy detected significantly larger long and short axes of the RF-ablations in II compared to I (52.2 ± 3.2 mm vs. 45.3 ± 6.9 mm [P<0.05] and 25.1 ± 3.5mm vs. 20.0 ± 1.9 mm [P<0.01], respectively). Microscopy detected irregular particle distribution at the rim of the RF-ablations in I. In II, microscopy detected homogeneous particle distribution at the rim of the RF-ablations. Microscopy detected no particles in the center of the RF-ablations in I and II.

Conclusion: The sequence of the different procedural steps of super-micro-bland particle embolization combined with RF-ablation impacts angiographic, macroscopic and microscopic features in kidneys in the acute setting.

PubMed Disclaimer

LinkOut - more resources