Using CSF biomarkers to replicate genetic associations in Alzheimer's disease
- PMID: 21459483
- PMCID: PMC3150628
- DOI: 10.1016/j.neurobiolaging.2011.02.008
Using CSF biomarkers to replicate genetic associations in Alzheimer's disease
Abstract
Defining cases and controls on the basis of biomarkers rather than clinical diagnosis may reduce sample sizes required for genetic studies. The aim of this study was to assess whether characterizing case/control status on the basis of cerebrospinal fluid (CSF) profile would increase power to replicate known genetic associations for Alzheimer's disease (AD). Independent of clinical diagnosis, Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects with 2 CSF biomarkers for AD (Aβ1-42 < 192 pg/mL and tau phosphorylated at threonine 181 (p-tau) > 23 pg/mL, "CSF-positive") were compared with those without CSF evidence for AD (Aβ1-42 > 192 pg/mL and 181-phosphorylated tau < 23 pg/mL, "CSF-negative"). Minor allele frequency (MAF) and odds ratios (ORs) between these 2 groups were calculated for 7 single-nucleotide polymorphisms (SNPs) of interest. Two hundred thirty-two individuals were CSF-positive and 94 CSF-negative. There were no differences in age (74.7 ± 7.2 vs. 75.0 ± 6.5 years, p = 0.7), but significant differences in Mini Mental State Examination (MMSE) (25.9 ± 2.6 vs. 28.2 ± 1.7, p < 0.001) between the CSF-positive and CSF-negative groups. Significant differences in MAF (p < 0.05, uncorrected) were seen for CR1 (rs1408077; OR, 1.59; 95% confidence interval [CI], 1.01-2.49), PICALM (rs541458; OR, 0.68, 95% CI, 0.47-0.98), TOMM40 (rs2075650; OR, 4.30; 95% CI, 2.61-7.06); and possession of 1 or more APOE ε4 alleles (OR, 9.84; 95% CI, 5.48-17.67). These results suggest that using biomarkers of AD pathology to define case and control status may increase power in genetic association studies.
Copyright © 2012 Elsevier Inc. All rights reserved.
Conflict of interest statement
Figures

References
-
- Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;39(1):17–23. - PubMed
-
- Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O'Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ. Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet. 2010;19(16):3295–301. - PMC - PubMed
-
- Cruchaga C, Kauwe JS, Mayo K, Spiegel N, Bertelsen S, Nowotny P, Shah AR, Abraham R, Hollingworth P, Harold D, Owen MM, Williams J, Lovestone S, Peskind ER, Li G, Leverenz JB, Galasko D, Morris JC, Fagan AM, Holtzman DM, Goate AM. SNPs associated with cerebrospinal fluid phospho-tau levels influence rate of decline in Alzheimer's disease. PLoS Genet. 2010;6(9) - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous