Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies
- PMID: 21459912
- DOI: 10.1099/jmm.0.030932-0
Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies
Abstract
Certain infectious diseases caused by pathogenic bacteria are typically chronic in nature. Potentially deadly examples include tuberculosis, caused by Mycobacterium tuberculosis, cystic fibrosis-associated lung infections, primarily caused by Pseudomonas aeruginosa, and candidiasis, caused by the fungal pathogen Candida albicans. A hallmark of this type of illness is the recalcitrance to treatment with antibiotics, even in the face of laboratory tests showing the causative agents to be sensitive to drugs. Recent studies have attributed this treatment failure to the presence of a small, transiently multidrug-tolerant subpopulation of cells, so-called persister cells. Here, we review our current understanding of the role that persisters play in the treatment and outcome of chronic infections. In a second part, we offer a perspective on the development of anti-persister therapies based on genes and mechanisms that have been implicated in persistence over the last decade.
Similar articles
-
Persister eradication: lessons from the world of natural products.Methods Enzymol. 2012;517:387-406. doi: 10.1016/B978-0-12-404634-4.00019-X. Methods Enzymol. 2012. PMID: 23084949
-
Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis.J Bacteriol. 2010 Dec;192(23):6191-9. doi: 10.1128/JB.01651-09. Epub 2010 Oct 8. J Bacteriol. 2010. PMID: 20935098 Free PMC article.
-
Persister cells.Annu Rev Microbiol. 2010;64:357-72. doi: 10.1146/annurev.micro.112408.134306. Annu Rev Microbiol. 2010. PMID: 20528688 Review.
-
Persister cells: molecular mechanisms related to antibiotic tolerance.Handb Exp Pharmacol. 2012;(211):121-33. doi: 10.1007/978-3-642-28951-4_8. Handb Exp Pharmacol. 2012. PMID: 23090599
-
Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections.Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439. doi: 10.1165/rcmb.2017-0321TR. Am J Respir Cell Mol Biol. 2018. PMID: 29372812 Free PMC article. Review.
Cited by
-
RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria.Front Cell Infect Microbiol. 2021 May 18;11:661026. doi: 10.3389/fcimb.2021.661026. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 34084755 Free PMC article. Review.
-
Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae.BMC Microbiol. 2016 Sep 17;16:216. doi: 10.1186/s12866-016-0838-9. BMC Microbiol. 2016. PMID: 27639378 Free PMC article.
-
Concurrent Infection of the Human Brain with Multiple Borrelia Species.Int J Mol Sci. 2023 Nov 29;24(23):16906. doi: 10.3390/ijms242316906. Int J Mol Sci. 2023. PMID: 38069228 Free PMC article.
-
Predicting toxins found in toxin-antitoxin systems with a role in host-induced Burkholderia pseudomallei persistence.Sci Rep. 2020 Oct 9;10(1):16923. doi: 10.1038/s41598-020-73887-3. Sci Rep. 2020. PMID: 33037311 Free PMC article.
-
Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection.Front Med (Lausanne). 2022 Mar 24;9:793615. doi: 10.3389/fmed.2022.793615. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35402433 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical