Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jan-Feb;4(1):9-16.
doi: 10.3892/mmr.2010.380. Epub 2010 Oct 11.

Identification of a novel function of Id-1 in mediating the anticancer responses of SAMC, a water-soluble garlic derivative, in human bladder cancer cells

Affiliations

Identification of a novel function of Id-1 in mediating the anticancer responses of SAMC, a water-soluble garlic derivative, in human bladder cancer cells

Hao Hu et al. Mol Med Rep. 2011 Jan-Feb.

Abstract

Studies have shown that the expression of inhibitor of differentiation (Id-1) is increased in bladder cancer and is associated with drug resistance. S-allylmercaptocysteine (SAMC), a water-soluble component of garlic, is known to have a potent therapeutic effect on human cancer. The aim of this study was to investigate whether Id-1 expression mediates SAMC-induced cell death in bladder cancer cells. After generating stable Id-1-expressing and si-Id-1 transfectants in various bladder cancer cell lines, cell sensitivity to SAMC was compared by colony formation and MTT assays. The results indicated that Id-1 overexpression reduced the positive effect of SAMC on cell survival, while the inactivation of Id-1 increased cellular susceptibility to SAMC. Using DAPI staining, the apoptosis of bladder cancer cells induced by SAMC was shown to be negatively regulated by Id-1 expression. The expression of apoptosis-related proteins analyzed by Western blotting further supported the negative role of Id-1 in SAMC-induced apoptosis. Furthermore, by wound closure and type I collagen invasion assays, the inhibitory effect of SAMC on the invasion and migration of bladder cancer cells was found to be associated with the down-regulation of Id-1. Our results demonstrated that SAMC-induced apoptosis is associated with the Id-1 pathway, and that the inactivation of Id-1 enhances the ability of SAMC to inhibit the survival, invasion and migration of bladder cancer cells. These findings may lead to the development of novel therapeutic strategies for the treatment of bladder cancer.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources