Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 5;265(31):18762-8.

Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+

Affiliations
  • PMID: 2146262
Free article

Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+

E Mintz et al. J Biol Chem. .
Free article

Abstract

Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources