White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases
- PMID: 21464471
- PMCID: PMC3135957
- DOI: 10.1104/pp.111.173724
White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases
Abstract
White lupin (Lupinus albus) is a legume that is very efficient in accessing unavailable phosphorus (Pi). It develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report, we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and GPX-PDE2) from white lupin and propose a role for these two GPX-PDEs in root hair growth and development and in a Pi stress-induced phospholipid degradation pathway in cluster roots. Both GPX-PDE1 and GPX-PDE2 are highly expressed in Pi-deficient cluster roots, particularly in root hairs, epidermal cells, and vascular bundles. Expression of both genes is a function of both Pi availability and photosynthate. GPX-PDE1 Pi deficiency-induced expression is attenuated as photosynthate is deprived, while that of GPX-PDE2 is strikingly enhanced. Yeast complementation assays and in vitro enzyme assays revealed that GPX-PDE1 shows catalytic activity with glycerophosphocholine while GPX-PDE2 shows highest activity with glycerophosphoinositol. Cell-free protein extracts from Pi-deficient cluster roots display GPX-PDE enzyme activity for both glycerophosphocholine and glycerophosphoinositol. Knockdown of expression of GPX-PDE through RNA interference resulted in impaired root hair development and density. We propose that white lupin GPX-PDE1 and GPX-PDE2 are involved in the acclimation to Pi limitation by enhancing glycerophosphodiester degradation and mediating root hair development.
Figures








References
-
- Andersson MX, Larsson KE, Tjellström H, Liljenberg C, Sandelius AS. (2005) Phosphate-limited oat: the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280: 27578–27586 - PubMed
-
- Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS. (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537: 128–132 - PubMed
-
- Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R. (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133: 1251–1263 - PMC - PubMed
-
- Bates TR, Lynch JP. (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19: 529–538
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Molecular Biology Databases