Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;18(12):1832-45.
doi: 10.2174/092986711795496863.

Oxidation chemistry of catecholamines and neuronal degeneration: an update

Affiliations
Review

Oxidation chemistry of catecholamines and neuronal degeneration: an update

A Napolitano et al. Curr Med Chem. 2011.

Abstract

Aberrant oxidative pathways of catecholamine neurotransmitters, i.e. dopamine and norepinephrine, are an important biochemical correlate of catecholaminergic neuron loss in some disabling neurodegenerative diseases of the elderly, notably Parkinson's disease. In an oxidative stress setting, under conditions of elevated lipid peroxidation, iron accumulation, impaired mitochondrial functioning and antioxidant depletion, catecholamines are oxidatively converted to the corresponding o-quinones, which may initiate a cascade of spontaneous reactions, including intramolecular cyclization, aminoethyl side chain fission and interaction with molecular targets. The overall outcome of the competing pathways may vary depending on contingent factors and the biochemical environment, and may include formation of nitrated derivatives, neuromelanin deposition, generation of chain fission products, conjugation with L-cysteine leading eventually to cytotoxic responses and altered cellular function. In addition, catecholamines may interact with products of lipid peroxidation and other species derived from oxidative breakdown of biomolecules, notably glyoxal and other aldehydes, leading e.g. to tetrahydroisoquinolines via Pictet-Spengler chemistry. After a brief introductory remark on oxidative stress biochemistry, the bulk of this review will deal with an overview of the basic chemical pathways of catecholamine oxidation, with special emphasis on the analogies and differences between the central neurotransmitters dopamine and norepinephrine. This chemistry will form the basis for a concise discussion of the latest advances in the mechanisms of catecholamine-associated neurotoxicity in neuronal degeneration.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources