Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 23;52(8):5457-64.
doi: 10.1167/iovs.10-6806.

Visualization of fundus vessel pulsation using principal component analysis

Affiliations

Visualization of fundus vessel pulsation using principal component analysis

Fabrice Moret et al. Invest Ophthalmol Vis Sci. .

Abstract

Purpose: Spontaneous venous pulsation is one of the clinical signs with which to rule out elevated intracranial pressure and papilledema. More subtle pulsatile retinal movements are difficult to observe because of eye movements. Recording a fundus movie and aligning (registering) the images helps, but the images still contain distracting microsaccadic distortions and noise. The authors hypothesized that addressing these latter points should allow observation of minute pulsating features in fundus movies.

Methods: Principal component analysis (PCA), a basic form of blind source analysis, is applied to recorded fundus image sequences. The authors demonstrate this method in 5-second image sequences acquired with a near-infrared SLO (HRA+OCT Spectralis). The images are first registered to correct for eye drift, then microsaccade-distorted images are rejected, and the remaining image sequence is decomposed into principal components. Finally, a movie is constructed using the first five principal components (these had pulsatile features).

Results: Each of the processing steps (registration, cleaning, PCA filtering) improves the detection of pulsatile features, ultimately allowing clear visualization of spontaneous venous pulsation. Depending on the subject, additional features can be observed: pulsation amplitude of the arterial tree of approximately 10 μm, pulsation of arterioles down to 70-μm diameter, complete venous collapse, overall optic nerve head tissue pulsation, and mechanical links between veins and arteries.

Conclusions: By disentangling pulsatile motion from other dynamic components of retinal images, unprecedented resolution in physiologic motion of retinal vessel structure is achievable.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources