Airway fibroblasts in asthma manifest an invasive phenotype
- PMID: 21471104
- PMCID: PMC3136991
- DOI: 10.1164/rccm.201009-1452OC
Airway fibroblasts in asthma manifest an invasive phenotype
Abstract
Rationale: Invasive cell phenotypes have been demonstrated in malignant transformation, but not in other diseases, such as asthma. Cellular invasiveness is thought to be mediated by transforming growth factor (TGF)-β1 and matrix metalloproteinases (MMPs). IL-13 is a key T(H)2 cytokine that directs many features of airway remodeling through TGF-β1 and MMPs.
Objectives: We hypothesized that, in human asthma, IL-13 stimulates increased airway fibroblast invasiveness via TGF-β1 and MMPs in asthma compared with normal controls.
Methods: Fibroblasts were cultured from endobronchial biopsies in 20 subjects with mild asthma (FEV(1): 90 ± 3.6% pred) and 17 normal control subjects (FEV(1): 102 ± 2.9% pred) who underwent bronchoscopy. Airway fibroblast invasiveness was investigated using Matrigel chambers. IL-13 or IL-13 with TGF-β1 neutralizing antibody or pan-MMP inhibitor (GM6001) was added to the lower chamber as a chemoattractant. Flow cytometry and immunohistochemistry were performed in a subset of subjects to evaluate IL-13 receptor levels.
Measurements and main results: IL-13 significantly stimulated invasion in asthmatic airway fibroblasts, compared with normal control subjects. Inhibitors of both TGF-β1 and MMPs blocked IL-13-induced invasion in asthma, but had no effect in normal control subjects. At baseline, in airway tissue, IL-13 receptors were expressed in significantly higher levels in asthma, compared with normal control subjects. In airway fibroblasts, baseline IL-13Rα2 was reduced in asthma compared with normal control subjects.
Conclusions: IL-13 potentiates airway fibroblast invasion through a mechanism involving TGF-β1 and MMPs. IL-13 receptor subunits are differentially expressed in asthma. These effects may result in IL-13-directed airway remodeling in asthma.
Figures
References
-
- Ingram JL, Antao-Menezes A, Mangum JB, Lyght O, Lee PJ, Elias JA, Bonner JC. Opposing actions of Stat1 and Stat6 on IL-13-induced up-regulation of early growth response-1 and platelet-derived growth factor ligands in pulmonary fibroblasts. J Immunol 2006;177:4141–4148. - PubMed
-
- Kraft M, Lewis C, Pham D, Chu HW. IL-4, IL-13, and dexamethasone augment fibroblast proliferation in asthma. J Allergy Clin Immunol 2001;107:602–606. - PubMed
